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ABSTRACT 

 

Topology, a branch of mathematics focused on understanding the fundamental properties of spaces, has 

experienced a new dimension with the introduction of 𝑘 -open sets. This exploration delves into the realm 

of 𝑘 -topology, unveiling concepts such as 𝑘 -interior, 𝑘 -closure, 𝑘 -limit points, 𝑘 -continuous functions, 

and more. Through rigorous definitions, illustrative examples, and a web of theorems, the study navigates 

the intricate relationships between 𝑘 -open sets and traditional topology. We analyze the interplay of 𝑘 -

functions, investigate the properties of 𝑘 -homeomorphisms, and discuss the connections between 𝑘 -totally 

continuous and 𝑘 -contra-continuous functions. By merging established topology with these novel notions, 

this study sheds light on the intricate fabric of topological spaces (𝑋, 𝜏)(briefly top. sp. 𝑋) from a unique 

perspective. 

 

Keywords: Topological Spaces, Homeomorphisms, Contra-Continuous Functions, Totally Continuous 

 

INTRODUCTION 

Topology is a branch of mathematics that delves into the fundamental properties and relationships 

between spaces, emphasizing concepts like continuity, convergence, and openness. Traditional 

topology has been instrumental in understanding the structure of spaces through the lens of open 

sets, continuous functions, and various topological properties. However, recent developments have 

extended this realm by introducing the notion of " 𝑘 -open sets," leading to the emergence of a 

new set of concepts and properties that provide novel insights into top. sp. 

In this exploration, we embark on a journey through the world of 𝑘 -open sets and their associated 

concepts. These concepts, ranging from 𝑘 -interior and 𝑘 -closure to 𝑘 -limit points, 𝑘 -derivatives, 

and more, offer a fresh perspective on how subsets interact within topological spaces. We 

investigate the interplay between 𝑘 -open and 𝑘 -closed sets, delve into the properties of 𝑘 -

continuous functions, and examine the intricacies of 𝑘 -totally continuous and 𝑘 -contra-

continuous functions. Moreover, the concept of 𝑘 -homeomorphism introduces a fascinating 

connection between 𝑘 -open sets and function properties. 
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Throughout this study, we provide rigorous definitions, explore theorems, and present illustrative 

examples to aid in understanding these intricate concepts. By combining established topology with 

these novel notions, we deepen our understanding of top. sp. and pave the way for new perspectives 

in the field of mathematics. 

Preliminaries 

Before delving into the specifics of 𝑘 -open sets and related concepts, let's establish a preliminary 

overview of the foundational principles of topology. We begin by reviewing the basics of open and 

closed sets, and the topology of space. Understanding the concept of continuity is crucial, as it 

serves as the bridge between the properties of spaces and functions. We also touch upon important 

notions like compactness, convergence, and the topological properties that emerge from the 

interplay of open sets. With this foundational knowledge in place, we transition to the main focus 

of our study 𝑘 -open sets. We define 𝑘 -open sets and examine their properties, drawing parallels 

and distinctions from traditional open sets. This leads us to explore 𝑘 -interior, 𝑘 -closure, 𝑘 -limit 

points, and other related concepts. We delve into the relationships between these concepts and 

demonstrate their implications through illustrative examples. As we progress, we introduce 𝑘 -

cont. funs and investigate their properties. We explore the connections between 𝑘 -continuous, 𝑘 -

irresolute, 𝑘 -totally continuous, and 𝑘-contra-cont. funs, revealing intriguing relationships and 

counterexamples. The notion of k-homeomorphism adds another layer of depth to our study, 

showcasing how 𝑘 -open sets and function properties interact. Overall, this preliminary overview 

sets the stage for a comprehensive exploration of 𝑘 -open sets and their role in understanding top. 

sp. Armed with this foundation, we embark on a journey through the intricacies and implications 

of these concepts, enriching our understanding of topology from a fresh perspective. Now, we 

present a novel category of open sets known as k-open sets. Through the utilization of these k-

open sets, we establish the concepts of k-interior, k-closure, k-limit points, k-derived, k-border, k-

frontier, and k-exterior, and delve into their topological characteristics. 

Definition 2.1: Let 𝑋 be a top. sp. A subset 𝜉 ⊆ 𝑋 is called 𝑘-open if for every set ∅ ≠ 𝑈 ⊆ 𝑋  

with 𝑈 ≠  𝑋 and 𝑈 ∈  𝜏 (𝑈 is an open set), 𝜉 ⊆ 𝑐𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝑈)). The complement of  𝑘-open set 

𝜉 in the top. sp. 𝑋 is called 𝑘-closed. In other words, a set 𝐵 is 𝑘-closed iff𝐵 is 𝑘-open. The family 

of all 𝑘-open sets of the top. sp. 𝑋 is denoted by 𝜏𝑘. 

Properties of k-open sets and k-closed sets 2.2: 

The concept of 𝑘 -open sets introduces a different perspective on openness within a topology. Here 

are some properties of k-open sets: 

1. Empty Set and Whole Space: ∅ and 𝑋 are 𝑘 -open.  

2. Finite Intersection: The 𝑘 -open property remains preserved when taking the intersection 

of a finite collection of 𝑘 -open is 𝑘 -open.  

3. Arbitrary Union: The union of arbitrary 𝑘 -open is not guaranteed to be 𝑘 -open. Unlike 

open sets in the standard topology, 𝑘 -open do not necessarily preserve openness under 

arbitrary unions. 
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4. Closure of 𝑘 -open Set: The closure of 𝑘-open need not be 𝑘-open. This is in contrast to 

open, where the closure of an open is still open. 

5. Interior of 𝑘-Closed Set: The interior of 𝑘-closed need not be 𝑘-closed. In the standard 

topology, the interior of closed set is open. 

6. Boundary of 𝑘 -Open Set: The boundary of 𝑘-open is contained within set itself. In 

traditional topology, the boundary of an open might have points both inside and outside the 

set. 

7. Frontier of 𝑘 -Open Set: The frontier (also known as the boundary) of 𝑘-open is contained 

within set itself. 

8. Derived Set of 𝑘-Open Set: The derived set of 𝑘 -open might not be 𝑘-open. In standard 

topology, the derived set of an open is generally not open. 

9. 𝑘 -Open Sets vs. Open Sets: In the general case, 𝑘 -open sets are a broader class than open 

. This means that every open is 𝑘 -open set, However, the opposite may not always hold 

true. 

10. Relationship to Topology: The properties of 𝑘 -open sets are closely tied to the specific 

definition used in this concept. They may not always match the intuitive properties of open 

sets in the standard topology. 

These properties highlight the distinctive nature of 𝑘 -open sets compared to open sets in traditional 

topology. The concept provides an alternative way to define openness within a space, but it can 

lead to different topological behaviors. 

Examples 2.3: Real Numbers with the k-topology. We consider the real numbers ℝ with 𝑘-top., A 

set is considered open if it encompasses its own accumulation points. In this case, let's compare 

open in standard topology with 𝑘 -open.  

1. Open Intervals in Standard Top.: The interval (0, 1) is open set in the standard topology. 

However, in the 𝑘 -topology, this isn’t 𝑘 -open, since its complement ([−∞, 0] ∪ [1, ∞)) 

isn’t 𝑘 -closed. The boundary points 0 and 1 are not contained in the complement's closure. 

2. Closed Sets in Standard Top.: The interval [0, 1] is closed set in standard topology. But, in 

𝑘 -top., it's not 𝑘 -closed since its interior is not 𝑘 -closed. 

3. Finite Intersection: The intersection of finitely many 𝑘 -open in 𝑘 -topology remains 𝑘 -

open. This is similar to the standard topology's property of finite intersection of open sets 

being open. 

Example 2.4: Discrete Topology. Consider a set 𝑋 with discrete top., where every subset is open. 

Let's examine properties of 𝑘-open sets in this context. 

1. Open Sets in Standard Topology: Since every subset is open, every subset is also 𝑘 -open, 

because the closure of any subset is the subset itself. 
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2. Union of 𝑘 -Open Sets: Union of arbitrary 𝑘 -open in the discrete top. is not necessarily 𝑘 

-open. For instance, if we take a union of two disjoint sets, their closure may not cover the 

union. 

3. Intersection of 𝑘-Closed Sets: In the discrete topology, all sets are closed. However, the 

intersection of 𝑘 -closed sets need not be 𝑘 -closed. 

Example 2.5: Finite Space. Consider a finite set 𝑋 with the discrete topology. Let's see how 𝑘 -

open sets behave here. 

1. Finite Sets in Standard Topology: All finite subsets are open in the standard topology, and 

therefore, all finite subsets are 𝑘 -open as well. 

2. Infinite Union: The infinite union of 𝑘 -open sets in this case is not guaranteed to be 𝑘 -

open. The k-closure may not cover the entire union. 

3. Boundary and Frontier: The boundary and frontier of 𝑘-open set will be set itself, similar 

to the discrete topology case. 

These examples illustrate how 𝑘 -open sets might behave differently from standard open in various 

topologies. The 𝑘 -top. introduces different perspective on openness and closedness, leading to 

distinct topological properties. 

Theorem 2.6: n any given topological space 𝑋, each open set is categorized as a 𝑘-open set. 

However, the reverse statement does not hold. 

Proof: Consider an open set 𝜉 in the top. sp. 𝑋.  To prove 𝜉 is 𝑘 -open set, i.e., for every non-empty 

set ∅ ≠ 𝑈 ⊆ 𝑋 (𝑈 ≠ 𝑋) and 𝑈 ∈ 𝜏, 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝑈)). Let 𝑈 ≠ ∅ in 𝑋 such that 𝑈 ≠ 𝑋 , 𝑈 ∈

 𝜏 (i.e., 𝑈 is an open). Since 𝜉 open, by definition, 𝜉 ⊆ 𝑈. Now, To show that 𝜉 ⊆

𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝑈)).Notice that 𝐼𝑛𝑡(𝑈) is subset of 𝑈, and therefore 𝜉 ∪ 𝐼𝑛𝑡(𝑈) also subset of 𝑈.Then, 

by the property of closure (𝐶𝑙), we know that 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝑈)), since 𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝑈)) is 

smallest closed containing 𝜉 ∪ 𝐼𝑛𝑡(𝑈), and 𝜉 ∪ 𝐼𝑛𝑡(𝑈) is subset of 𝑈.Therefore, we have shown 

that for every ∅ ≠ 𝑈 ⊆ 𝑋, (𝑈 ≠  𝑋) and 𝑈 ∈ 𝜏, 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝑈)), which means 𝜉 is a 𝑘-open 

set. 

Converse: Its isn’t necessarily true. That is, not every 𝑘-open is open. The definitions of openness 

and 𝑘 -openness are different, and a set being 𝑘 -open depends on the specific conditions stated in 

its definition (𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝑈))). This means that there can be 𝑘 -open sets that are not open 

according to the standard topology. 

In summary, every open set in a top. sp. is a 𝑘 -open set, but not every 𝑘 -open set is necessarily 

an open set. The concepts of open sets and 𝑘 -open sets are related but distinct, and their properties 

can differ in certain contexts. 

Now, we rewrite the theorem 2.6 as: 
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Theorem 2.7: Every open set in any top. sp. 𝑋 is a 𝑘-open set iff every 𝑘-open set is open. 

Proof: Direction 1: Every open is 𝑘-open. We showed if 𝜉 is an open in a top. sp. 𝑋, then for every 

∅ ≠ 𝑈 ⊆ 𝑋 , (𝑈 ≠ 𝑋) and 𝑈 ∈ 𝜏, 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝑈)), satisfying the definition of 𝑘-openness. 

Direction 2: Every 𝑘-open is open. Let 𝜉 be a 𝑘-open in the top. sp. 𝑋. For every ∅ ≠ 𝑈 ⊆ 𝑋 

, (𝑈 ≠ 𝑋) and 𝑈 ∈ 𝜏, we have 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝑈)).Let's consider 𝑈 = 𝜉. Since 𝑈 ∈ 𝜏 (by the 

definition of top. sp., every open is in the topology), we have 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝐴)).Now, notice 

that 𝜉 ⊆ 𝐼𝑛𝑡(𝜉) (since every set is a subset of its interior). Therefore, 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝜉)) = 𝐶𝑙(𝜉) 

(since 𝜉 ⊆ 𝐼𝑛𝑡(𝜉)).Since 𝜉 ⊆ 𝐶𝑙(𝜉), and 𝐶𝑙(𝜉) is closed set containing 𝜉, by definition of open, 𝜉 

must be an open. Therefore, every 𝑘-open is open. So, if every open is 𝑘-open set and every 𝑘-

open set is open, then openness and 𝑘-openness are equivalent concepts, meaning that a set is open 

iffits 𝑘-open. 

Definition 2.8 Let 𝑋 be top. Sp., and let 𝜉 be subset of 𝑋. The 𝑘-interior of 𝜉 is defined as the 

amalgamation of all 𝑘-open within 𝑋, denoted as 𝐼𝑛𝑡𝑘(𝜉). It's evident that 𝐼𝑛𝑡𝑘(𝜉) is 𝑘-open set 

for any subset 𝜉 of 𝑋 . 

Example 2.9: Consider the top. sp. 𝑋 ,where 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝜏 =

{∅, 𝑋, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}}. the k-interior 𝐼𝑛𝑡𝑘(𝜉) for subset 𝜉 ⊆  𝑋. Let's take 𝜉 =  {𝑎, 𝑏} 

as an example subset. 𝐼𝑛𝑡𝑘({𝑎, 𝑏}) = {∅} ∪ {𝑎} ∪ {𝑎, 𝑏} ∪ {𝑎, 𝑏, 𝑐} = {∅, 𝑎, 𝑏, 𝑐} 

Proposition 2.10: Let 𝑋 be a top. sp. and let 𝜉 ⊆  𝐵 ⊆  𝑋. Then: 

1. 𝐼𝑛𝑡𝑘(𝜉) ⊆  𝐼𝑛𝑡𝑘(𝐵).  

2. 𝐼𝑛𝑡𝑘(𝜉)  ⊆  𝜉.  

3. 𝜉 is 𝑘-open iff 𝜉 = 𝐼𝑛𝑡𝑘(𝜉). 

Definition 2.11: Assume 𝑋 is a topological space and let 𝜉 be a subset of 𝑋. The 𝑘-closure of 𝜉, 

denoted as 𝐶𝑙𝑘(𝜉), is determined as the intersection of all 𝑘-closed sets within 𝑋 that encompass 

𝜉. It's evident that 𝐶𝑙𝑘(𝜉) qualifies as a 𝑘-closed set for any subset 𝜉 of 𝑋. 

Example 2.12: Consider the top. sp. 𝑋 where 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝜏 =

 {∅, 𝑋, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}}. The 𝑘-closure 𝐶𝑙𝑘(𝜉) for subset 𝜉 ⊆  𝑋. Let's take 𝜉 =  {𝑎, 𝑏} 

as an example subset. 𝐶𝑙𝑘({𝑎, 𝑏}) = 𝑋 ∩ {𝑎, 𝑏} ∩ {𝑎, 𝑏, 𝑐} ∩ {𝑎, 𝑏, 𝑐, 𝑑} = {𝑎, 𝑏}. As we can see, 

𝐶𝑙𝑘({𝑎, 𝑏}) is a 𝑘-closed and is indeed the intersection of 𝑘-closed containing {𝑎, 𝑏}. Under these 

circumstances, the 𝑘-closure is {𝑎, 𝑏}. The 𝑘-closure 𝐶𝑙𝑘(𝜉) captures the concept of closedness 

considering 𝑘-closed sets, and it is not necessarily the same as the usual closure defined by standard 

topology. The 𝑘-closure 𝐶𝑙𝑘(𝜉) ensures that the intersection of 𝑘-closed containing 𝜉 is itself a 𝑘-

closed set. 
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Definition 2.13. Let 𝑋 as a top sp, and let 𝜉 ⊆  𝑋. An element 𝑥 ∈  𝑋 is designated as a 𝑘-limit 

point of 𝜉 if it fulfills the following condition: for any 𝐺 in the 𝑘-topology 𝜏𝑘, if 𝑥 is an element 

of 𝐺, then the intersection of 𝐺 with the set 𝜉{𝑥} is non-empty. 

Example 2.14: Consider the top. sp. 𝑋 where 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝜏 =

{∅, 𝑋, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}}. Let's find the 𝑘-limit points of set 𝜉 ⊆ 𝑋. Let's take 𝜉 = {𝑎, 𝑏} as 

an example subset. Therefore, the 𝑘-limit points of the set 𝜉 = {𝑎, 𝑏} in this topology are {𝑎, 𝑏}. 

Example 2.15: Let 𝑋 be set of real numbers with the usual top denoted by 𝜏. In other words, 𝜏 

comprises the set of all open intervals (𝑎, 𝑏), where both "𝑎" and "𝑏" are real numbers. Consider 

the set 𝜉 = (1, 3) ∪ {4}. The 𝑘-interior of 𝜉, denoted by 𝐼𝑛𝑡𝑘(𝜉) = (1, 2) ∪ (1, 3) ∪ (2, 3) ∪

(4, 5) 

Definition 2.16: Let 𝑋 be top. sp., and let 𝜉 be a subset of 𝑋. Within this context, a point 𝑥 ∈  𝑋 

is defined as 𝑘-limit point of 𝜉 if it adheres to the following condition: for every 𝑘-open set 𝐺 

(denoted by 𝜏𝑘), if 𝑥 is an element of 𝐺, then the intersection of 𝐺 and the set 𝜉 excluding the point 

𝑥 (denoted as 𝜉{𝑥}) is not empty. The collection of all 𝑘-limit points of the set 𝜉 is referred to as 

the 𝑘-derived set of 𝜉, denoted as 𝐷𝑘(𝜉). 

Example 2.17: Consider the top. sp. 𝑋, In this context, X represents the set of real numbers 

equipped with the standard top., denoted as τ. (open intervals). Let's work with a specific set 𝜉 and 

its k-limit points and k-derived set are Let 𝜉 = (1, 3) ∪ {4}.  The 𝑘-derived set 𝐷𝑘(𝜉)represents 

the collection of all accumulation points of 𝜉 with respect to the parameter 𝑘.𝐷𝑘(𝜉) =  {1, 2, 3, 4} 

Theorem 2.18: If 𝑥 is not 𝑘- accumulation point of 𝜉, then there exists a 𝑘-open set 𝐺 in 𝑋 such 

that 𝑥 ∈ 𝐺 and 𝐺 ∩ (𝜉{𝑥}) = ∅. 

Proof:  Let's prove this statement by considering both cases: when 𝑥 is not a 𝑘- accumulation point 

of 𝜉, and when 𝑥 is a 𝑘- accumulation point of 𝜉. Let  𝑥 is not a 𝑘- accumulation point of 𝜉, it 

means that there exists a 𝑘-open 𝐺𝑥 in 𝑋 such that 𝑥 ∈  𝐺𝑥, but the intersection 𝐺𝑥 ∩ (𝜉{𝑥}) is 

empty. This is because 𝑥 not being a 𝑘- accumulation point implies that there is a 𝑘-open containing 

𝑥, but that set doesn't have a non-empty intersection with (𝜉{𝑥}). Suppose  𝑥 is a 𝑘- accumulation 

point of 𝜉: then for every 𝑘-open 𝐺 containing 𝑥, the intersection 𝐺 ∩ (𝜉{𝑥}) ≠ ∅ . This means 

that there is no 𝑘-open that includes 𝑥 and has an empty intersection with (𝐴{𝑥}). 

Example 2.19: 

1. Let's consider the set 𝜉 =  (1, 3) ∪ {4} and point 𝑥 = 2. We've already seen that 𝑥 = 2 is 

a 𝑘- accumulation point of 𝜉. However, if we consider a 𝑘-open  𝐺 = (1, 3), it contains 

𝑥 = 2 but has an empty intersection with (𝜉{2}), which is {(1, 3), 4}{2} =  {(1, 3), 4}. This 

example shows that 𝑥 =  2 is not 𝑘- accumulation point of 𝜉. 
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2. Let's consider the set 𝜉 = (1, 3) ∪ {4} and point 𝑥 = 1. We've already seen that 𝑥 = 1 is 

𝑘- accumulation point of 𝜉. For any 𝑘-open 𝐺 containing 1, the intersection 𝐺 ∩

((1, 3) ∪ {4} {1}) ≠ ∅ . This is the characteristic of a 𝑘- accumulation point. 

In summary, if 𝑥 is not 𝑘- accumulation point of 𝜉, there exists a 𝑘-open 𝐺 containing x such that 

𝐺 ∩ (𝜉{𝑥}) = ∅. Conversely, if 𝑥 is a 𝑘-limit point of 𝜉, for every 𝑘-open set 𝐺 containing 𝑥, the 

intersection 𝐺 ∩ (𝜉{𝑥}) ≠ ∅ . This showcases the behavior of 𝑘-accumulation points in relation to 

𝑘-open and their intersections with 𝜉. 

Theorem 2.20: Let 𝑋 be a top. sp., and let 𝜉 be subset of 𝑋. The following statements are 

equivalent: 

1. (∀𝐺 ∈ 𝜏𝑘)(𝑥 ∈ 𝐺 ⇒ 𝜉 ∩ 𝐺 ≠ ∅). 

2. 𝑥 ∈ 𝐶𝑙𝑘(𝜉). 

Proof: To prove that statements 1 and 2 are equivalent, we will prove the two implications: 

Implication (1) ⇒ (2): Assume that for every 𝑘-open set 𝐺 in 𝜏𝑘, if 𝑥 ∈ 𝐺, then 𝜉 ∩ 𝐺 ≠ ∅. We 

want to show that 𝑥 ∈ 𝐶𝑙𝑘(𝜉). By definition, 𝑥 ∈ 𝐶𝑙𝑘(𝜉) iff for every 𝑘-open set 𝐺 in 𝜏𝑘 containing 

x, 𝐺 ∩ (𝜉{𝑥}) ≠ ∅. Let's take any 𝑘-open set 𝐺 containing 𝑥. According to our assumption (1), 𝜉 ∩

𝐺 ≠ ∅. This implies that there is element 𝑦 in both 𝜉 and 𝐺. If 𝑦 ≠ 𝑥, then 𝑦 ∈ 𝐺 ∩ (𝜉{𝑥}) ≠ ∅. 

If 𝑦 = 𝑥, then since 𝜉 ∩ 𝐺 ≠ ∅, there must be an element 𝑥 ≠ 𝑧 in 𝜉 and is in 𝐺. Therefore, 𝑧 ∈

𝐺 ∩ (𝜉{𝑥}) ≠ ∅. In either case, we prove that for every 𝑘-open 𝐺 containing 𝑥, 𝐺 ∩ (𝜉{𝑥}) ≠ ∅, 

which implies that 𝑥 ∈  𝐶𝑙𝑘(𝜉). 

Implication (2) ⇒ (1): Assume that 𝑥 ∈ 𝐶𝑙𝑘(𝜉). We prove that for every 𝑘-open 𝐺 in 𝜏𝑘containing 

𝑥, 𝜉 ∩ 𝐺 ≠ ∅. By definition, 𝑥 ∈ 𝐶𝑙𝑘(𝜉) means that for every 𝑘-open  𝐺 in 𝜏𝑘 containing 𝑥, the 

intersection 𝐺 ∩ (𝜉{𝑥}) ≠ ∅. Let 𝐺 be any 𝑘-open set in 𝜏𝑘 containing 𝑥. If 𝐺 ∩ (𝜉{𝑥}) ≠ ∅, then 

we are done, and 𝜉 ∩ 𝐺 ≠ ∅. If 𝐺 ∩ (𝜉{𝑥}) = ∅, it means that there is no element of 𝜉 in 𝐺 other 

than 𝑥. However, since 𝑥 ∈ 𝐶𝑙𝑘(𝜉), every 𝑘-open set containing 𝑥 must have a non-empty 

intersection with 𝜉 (excluding 𝑥). This implies that there must be an element of 𝜉 other than 𝑥 in 

𝐺, which leads to a contradiction. Since the assumption 𝐺 ∩ (𝜉{𝑥}) = ∅ leads to a contradiction, 

it must be the case that 𝐺 ∩ (𝜉{𝑥}) ≠ ∅, and thus 𝜉 ∩ 𝐺 ≠ ∅. Therefore, the two statements are 

equivalent, and the theorem is proved.  

Theorem 2.21: Let 𝑋 be a top. sp., and let 𝜉 ⊆  𝐵 ⊆  𝑋. The following statements hold: 

1. 𝐶𝑙𝑘(𝜉) = 𝜉 ∪ 𝐷𝑘(𝜉). 

2. 𝜉 is 𝑘-closed  𝐷𝑘(𝜉) ⊆ 𝜉. 

3. 𝐷𝑘(𝜉) ⊆ 𝐷𝑘(𝜉). 

4. 𝐷𝑘(𝜉) ⊆ 𝐷(𝜉). 

5. 𝐶𝑙𝑘(𝜉) ⊆  𝐶𝑙(𝜉). 
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Theorem 2.22: Let 𝜏1 and 𝜏2 be topologies on 𝑋 such that (𝜏1)𝑘 ⊆ (𝜏2)𝑘. For any subset 𝜉 of 𝑋, 

every 𝑘- accumulation point of 𝜉 with respect to 𝜏2 is a 𝑘 - accumulation point of 𝜉 with respect 

to 𝜏1. 

Proof: Let's prove this theorem by considering a 𝑘 -limit point 𝑥 of 𝜉 with respect to 𝜏2. According 

to Definition 2.13, for every 𝑘-open set 𝐺 in (𝜏2)𝑘 such that 𝑥 ∈  𝐺, the intersection 𝐺 ∩ (𝜉{𝑥}) ≠

∅. Since (𝜏1)𝑘 ⊆  (𝜏2)𝑘, every 𝑘-open set in (𝜏1)𝑘 is also a 𝑘-open set in (𝜏2)𝑘. Therefore, the 𝑘-

open sets from 𝜏1 are also 𝑘-open sets from 𝜏2. Now, consider any 𝑘-open set 𝐺 in (𝜏1)𝑘 containing 

𝑥. Since 𝐺 is a 𝑘-open set in (𝜏2)𝑘as well, according to the definition of a 𝑘-limit point with respect 

to 𝜏2, 𝐺 ∩ (𝐴{𝑥}) ≠ ∅.  This suggests that 𝑥 serves as a 𝑘-limit point of 𝜉 under 𝜏1 as well. Put 

differently, any 𝑘-limit point of 𝜉 under 𝜏2 is also a 𝑘-limit point of 𝜉 under 𝜏1.based on the given 

condition that (𝜏1)𝑘 ⊆  (𝜏2)𝑘.  

Example 2.23. 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏1 = {∅, 𝑋, {𝑎}} and 𝜏2  =  {∅, 𝑋, {𝑎}, {𝑎, 𝑏}.To determine whether 

(𝜏1)𝑘 is subset of (𝜏2)𝑘. Given: 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏1  =  {∅, 𝑋, {𝑎}}, 𝜏2  =  {∅, 𝑋, {𝑎}, {𝑎, 𝑏}},(𝜏1)𝑘 =

{ ∅, 𝑋, {𝑎}},(𝜏2)𝑘 = {∅, 𝑋, {𝑎}, {𝑎, 𝑏}}. Now, let's compare (𝜏1)𝑘 and (𝜏2)𝑘. As we can see, (𝜏1)𝑘 ⊈ 

(𝜏2)𝑘, since {𝑎} is not present in (𝜏2)𝑘. Therefore, the given statement (𝜏1)𝑘 ⊆  (𝜏2)𝑘 is not true 

in this case. 

Example2.24: Consider the set 𝑋 = {𝑎, 𝑏, 𝑐} and the following topologies: 𝜏1 =

 {∅, 𝑋, {𝑎}, {𝑏}}, 𝜏2 =  {∅, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}}.then  (𝜏1)𝑘  =  ∅, 𝑋, {𝑎}, {𝑏}, {𝑎}, and {𝑏},and 

(𝜏2)𝑘 = ∅, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎}, and {𝑏}.Therefore, Under these circumstances, the assertion 

(𝜏1)𝑘 ⊆  (𝜏2)𝑘 is true. 

Theorem 2.25.  

Suppose 𝑋 is a top. sp., and let 𝜉 and 𝐵 be subsets of 𝑋. If 𝜉 is 𝑘-closed, then the 𝑘-closure of the 

intersection of 𝜉 and 𝐵 is contained within the intersection of 𝜉 and the 𝑘-closure of 𝐵. i.e., 

𝐶𝑙𝑘(𝜉 ∩ 𝐵) ⊆ 𝜉 ∩  𝐶𝑙𝑘(𝐵) 

Proof: Assume that 𝜉 is 𝑘-closed, which means 𝜉 = 𝐶𝑙𝑘(𝜉). We want to show that 𝐶𝑙𝑘(𝜉 ∩ 𝐵) ⊆

𝜉 ∩ 𝐶𝑙𝑘(𝐵).First, consider any point 𝑥 in 𝐶𝑙𝑘(𝜉 ∩  𝐵). This means that 𝑥 is in the intersection of 

all 𝑘-closed sets containing 𝜉 ∩ 𝐵.Since 𝜉 is 𝑘-closed, 𝜉 is itself a 𝑘-closed set containing 𝜉. So, 

for every 𝑘-open set 𝐺 containing 𝑥, we have 𝐺 ∩ (𝜉{𝑥}) ≠ ∅. Also, since 𝑥 is in 𝐶𝑙𝑘(𝜉 ∩ 𝐵), 𝑥 is 

in the intersection of all 𝑘-closed sets containing 𝜉 ∩ 𝐵. This implies that 𝑥 is in the intersection 

of all 𝑘-closed sets containing 𝐵, because 𝜉 ∩ 𝐵 is a subset of 𝐵.Therefore, 𝑥 ∈ 𝐶𝑙𝑘(𝐵), which 

means 𝑥 ∈ 𝜉 ∩ 𝐶𝑙𝑘(𝐵).Now we have shown that every point 𝑥 ∈ 𝐶𝑙𝑘(𝜉 ∩ 𝐵) is also in 𝜉 ∩

𝐶𝑙𝑘(𝐵).Hence, 𝐶𝑙𝑘(𝜉 ∩ 𝐵) ⊆ 𝜉 ∩ 𝐶𝑙𝑘(𝐵), as required. 

Lemma 2.26: Let 𝑋 be a top. sp., and let 𝜉 be a subset of 𝑋. Then 𝜉 is 𝑘-open iff there exists an 

open 𝑈 in 𝑋 such that 𝜉 ⊆  𝑈 ⊆  𝐶𝑙(𝜉). 
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Proof: 𝜉 is 𝑘-open ⇒ There exists 𝑈: 𝜉 ⊆ 𝑈 ⊆ 𝐶𝑙(𝜉)). Assume that 𝜉 is 𝑘-open. This means that 

for every non-empty open set 𝐺 in 𝑋, if 𝐺 contains 𝜉, then 𝜉 ⊆  𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺))according to the 

definition of 𝑘-open sets. Let 𝑈 = 𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺)). Since 𝐺 is open and 𝐺 contains 𝜉, 𝑈 is also an 

open set. 𝜉 ⊆  𝑈. By construction, 𝑈 = 𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺)), and since 𝜉 ⊆ 𝜉 ∪ 𝑖𝑛𝑡(𝐺), 𝜉 is a subset 

of 𝑈. 𝑈 ⊆ 𝐶𝑙(𝜉). Since 𝑈 = 𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺)), 𝑈 is a closed set that contains 𝜉. This means that 

every point in 𝑈 is either in 𝜉 or a limit point of 𝜉. Therefore, 𝑈 ⊆ 𝐶𝑙(𝜉). Hence, in this direction, 

we have shown that if 𝜉 is 𝑘-open, then there exists an open set 𝑈 in 𝑋 such that 𝜉 ⊆ 𝑈 ⊆ 𝐶𝑙(𝜉). 

Backward Direction (There exists 𝑈: 𝜉 ⊆ 𝑈 ⊆ 𝐶𝑙(𝜉) ⇒ 𝜉 is 𝑘-open): Assume that there exists an 

open set 𝑈 in 𝑋 such that 𝜉 ⊆ 𝑈 ⊆ 𝐶𝑙(𝜉). This implies that every point in 𝑈 is either in 𝜉 or a limit 

point of 𝜉. Let 𝐺 be a non-empty open set in 𝑋 that contains 𝜉. According to our assumption, 𝐺 ∪

𝑖𝑛𝑡(𝐺) is an open set that contains 𝐴. Since 𝐺 ⊆ 𝐺 ∪ 𝑖𝑛𝑡(𝐺), every point in 𝐺 is also in 𝑈. This 

means that for every point 𝑥 in 𝐺, 𝑥 is either in 𝜉 or a limit point of 𝜉. According to Definition 2.1 

of 𝑘-open, for every non-empty open set G that contains 𝜉, 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺)), which is the same 

as 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝐺). Since 𝐺 is open and contains 𝜉, this condition is satisfied for 𝑘-openness. Hence, 

in this direction, We've demonstrated that if an open set U exists within the space X such that 𝜉 ⊆

𝑈 ⊆ 𝐶𝑙(𝜉), then 𝜉 is 𝑘-open. Combining both directions, we conclude that 𝜉 is 𝑘-Open iff there's 

open U within X such that 𝜉 ⊆ 𝑈 ⊆ 𝐶𝑙(𝜉). 

Lemma 2.27: The 𝑘-openness of a set obtained by intersecting an open set and a 𝑘-open set is 

preserved. 

Proof: Let 𝑈 be an open set and 𝑉 be a 𝑘-open in a top. sp. 𝑋.To prove that  𝑈 ∩ 𝑉 is a 𝑘-open set. 

According to Definition 2.1 of 𝑘-open sets, we need to show that for every ∅ ≠ 𝐺 in 𝑋 (𝐺 ≠ 𝑋) 

that is open, (𝑈 ∩ 𝑉) ⊆ 𝐶𝑙((𝑈 ∩ 𝑉) ∪ 𝑖𝑛𝑡(𝐺)). Let 𝐺 be a non-empty open set in 𝑋 (𝐺 ≠ 𝑋). 

Now, let's consider the set (𝑈 ∩ 𝑉) ∪ 𝑖𝑛𝑡(𝐺). Since 𝑖𝑛𝑡(𝐺) ⊆ 𝐺, we have (𝑈 ∩ 𝑉) ∪ 𝑖𝑛𝑡(𝐺) ⊆

(𝑈 ∩ 𝑉) ∪ 𝐺. Now, let's look at the closure of (𝑈 ∩ 𝑉) ∪  𝐺. Since 𝑈 is open, 𝑈 ∩ 𝐺 is also open. 

Thus, 𝐶𝑙(𝑈 ∩ 𝐺) ⊆ 𝐶𝑙(𝐺). Since 𝑉 is 𝑘-open, (𝑈 ∩ 𝑉) ⊆ 𝐶𝑙((𝑈 ∩ 𝑉) ∪ 𝑖𝑛𝑡(𝐺)) = 𝐶𝑙(𝑈 ∩ 𝐺) ⊆

𝐶𝑙(𝐺). This shows that (𝑈 ∩ 𝑉) ∪ 𝑖𝑛𝑡(𝐺) ⊆ 𝐶𝑙((𝑈 ∩ 𝑉) ∪ 𝑖𝑛𝑡(𝐺)). Since this condition holds for 

every open  ∅ ≠ 𝐺 in 𝑋 (𝐺 ≠ 𝑋), we can conclude that 𝑈 ∩ 𝑉 is a 𝑘-open , according to Definition 

2.1. Therefore, the intersection of an open set 𝑈 and a 𝑘-open set 𝑉, which is 𝑈 ∩ 𝑉, is indeed a 

𝑘-open set. 

Example 2.28: Given 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏1 =  {∅, 𝑋, {𝑎}}, 𝜏2 =  {∅, 𝑋, {𝑎}, {𝑎, 𝑏}}.  (𝜏1)𝑘 =

{∅, 𝑋, {𝑎}, {𝑎}}. .  (𝜏2)𝑘  =  {∅, 𝑋, {𝑎}, {𝑎, 𝑏}, {𝑎}, {𝑎, 𝑏}}These are the families of 𝑘-open sets for 

the respective topologies (𝜏1)𝑘 and (𝜏2)𝑘. 

Theorem 2.29:  If τ is the indiscrete (trivial) top. or the discrete top. on  𝑋, then 𝜏𝑘 (the family of 

all 𝑘-open sets) is also indiscrete (trivial) top. or the discrete top. on 𝑋, respectively. 

Proof: Case 1: 𝜏 is the indiscrete (trivial) topology:  In indiscrete top., the only open sets are ∅ and 

𝑋. According to Definition 2.1, the 𝑘-open sets are subsets 𝜉 of 𝑋 for which 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺)) 
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for every non-empty set 𝐺 (𝐺 ≠ 𝑋) that is open. Since the only ∅ open set 𝐺 is 𝑋 itself, the 

condition 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺)) is always satisfied because 𝑖𝑛𝑡(𝐺) = 𝑋. This means that every 

subset 𝜉 of 𝑋 satisfies the condition for k-openness. Therefore, in this case, 𝜏𝑘 (the family of all 

𝑘-open sets) contains all subsets of 𝑋, which is the power set of 𝑋. This is precisely the discrete 

topology on 𝑋. 

Case 2: τ is the discrete topology: In the discrete topology, every subset of 𝑋 is open. According 

to Definition 2.1, the 𝑘-open sets are subsets 𝜉 of 𝑋 for which 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺)) for every non-

empty set 𝐺 (𝐺 ≠ 𝑋) that is open. Since in the discrete topology every subset is open, the condition 

𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺)) is always satisfied because 𝑖𝑛𝑡(𝐺) = 𝐺. This means that every subset 𝜉 of 𝑋 

satisfies the condition for 𝑘-openness. Therefore, in this case, 𝜏𝑘 (the family of all 𝑘-open sets) 

again contains all subsets of 𝑋, which is the power set of 𝑋. This is also the discrete topology on 

𝑋.  In both cases, 𝜏𝑘 is either the indiscrete topology or the discrete topology on 𝑋, respectively. 

Example2.30: Let's consider examples for both cases mentioned in Theorem 2.29 

Case 1: Indiscrete (Trivial) Topology: 

In the indiscrete topology on any set 𝑋, the only open sets are the empty set and the whole set 𝑋. 

Let's examine the 𝑘-open sets in this case. For every subset 𝜉 of 𝑋, since there's only one non-

empty open set (which is 𝑋 itself), the condition 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺)) is trivially satisfied. 

Therefore, every subset 𝜉 of 𝑋 is 𝑘-open in the indiscrete topology. Hence, in this case, 𝜏𝑘 (the 

family of all 𝑘-open sets) is the power set of 𝑋, which is the discrete topology on 𝑋. 

Case 2: Discrete Topology: In the discrete topology on any set 𝑋, every subset is open. Let's 

examine the 𝑘-open sets in this case. Again, for every subset 𝜉 of 𝑋, since every subset is open, 

the condition 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝑖𝑛𝑡(𝐺)) is trivially satisfied for any open set 𝐺(𝐺 ≠ 𝑋). Therefore, 

every subset 𝜉 of 𝑋 is 𝑘-open in the discrete topology. As in the previous case, 𝜏𝑘 (the family of 

all 𝑘-open sets) is the power set of 𝑋, which is the discrete topology on 𝑋. In both cases, the 

theorem holds true, and the family of all 𝑘-open sets coincide with either the discrete topology or 

the indiscrete topology on the given set 𝑋. 

Lemma 2.31:  If 𝜉 is a subset of a discrete top. sp. 𝑋 then the 𝑘-derived set of 𝜉, denoted 𝐷𝑘(𝜉), 

is empty. 

Proof: In a discrete top. sp., every subset is open, and thus every subset is closed. This means that 

for any subset 𝜉 of 𝑋, 𝐶𝑙𝑘(𝜉) =  𝜉, because 𝜉 is already closed. According to Definition 2.13, the 

𝑘-derived set of 𝜉, denoted 𝐷𝑘(𝜉), consists of the 𝑘-limit points of 𝜉. By Definition 2.13, a point 

𝑥 is a 𝑘-limit point of 𝜉 if for every 𝑘-open set 𝐺 containing 𝑥, 𝐺 ∩ (𝜉{𝑥}) ≠ ∅. In a discrete top. 

sp., every subset is open. So, for any point 𝑥 ∈ 𝑋, we can consider the singleton set {𝑥} as a 𝑘-

open set that contains 𝑥. Since {𝑥} ∩ (𝜉{𝑥}) =  ∅ for any 𝑥 ∈ 𝜉, this means that no point in 𝜉 
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satisfies the condition for a 𝑘-limit point. Therefore, 𝐷𝑘(𝜉) is the empty set (∅) for any subset 𝜉 

of a discrete top. sp. 

Definition 2.32. Let 𝑋 be a top. sp. and let 𝜉 ⊆ 𝑋. Then 𝑏𝑘(𝜉) = 𝜉\𝐼𝑛𝑡𝑘(𝜉) is called the 𝑘-border 

of 𝜉, and the set 𝐹𝑟𝑘(𝜉) = 𝐶𝑙𝑘(𝜉)\𝐼𝑛𝑡𝑘(𝜉) is called the 𝑘-frontier of 𝜉. Note that if 𝜉 is a 𝑘-closed 

subset of 𝑋, then 𝑏𝑘(𝜉) = 𝐹𝑟𝑘(𝜉). 

Example 2.33: Let 𝑋 = {𝑎, 𝑏, 𝑐} with topology 𝜏 = {∅, 𝑋, {𝑏}, {𝑏, 𝑐}}, then 𝜏𝑘  =

 {∅, 𝑋, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}}. 

1. If 𝜉 = {𝑎, 𝑏}, then 𝐼𝑛𝑡𝑘(𝜉) = {𝑎, 𝑏}, 𝑏𝑘(𝜉) = 𝜉, 𝐼𝑛𝑡𝑘(𝜉) = ∅, 𝐶𝑙𝑘(𝜉) ){𝑏, 𝑐}, 𝐹𝑟𝑘(𝜉) =

 𝐶𝑙𝑘(𝜉) , 𝐼𝑛𝑡𝑘(𝜉)  = {𝑐}.  

2. if 𝜉 = {𝑏, 𝑐},then 𝐼𝑛𝑡𝑘(𝜉) ) = {𝑏, 𝑐}, 𝑏𝑘(𝜉) = 𝜉, 𝐼𝑛𝑡𝑘(𝜉) = ∅ , 𝐶𝑙𝑘(𝜉) =

{𝑏, 𝑐}, 𝐹𝑟𝑘(𝜉) ) =  𝐶𝑙𝑘(𝜉) , 𝐼𝑛𝑡𝑘(𝜉)  =  ∅. 

Theorem 2.34: If 𝜉 is a 𝑘-closed subset of 𝑋, then the 𝑘-border of 𝜉, denoted 𝑏𝑘(𝜉), is equal to 

the 𝑘-frontier of 𝜉, denoted 𝐹𝑟𝑘(𝜉). 

Proof: Let 𝐴 be a 𝑘-closed subset of 𝑋. This means 𝜉 = 𝐶𝑙𝑘(𝜉) by definition.   

1. 𝑏𝑘(𝜉):  The 𝑘-border of 𝜉, denoted 𝑏𝑘(𝜉), is  𝐼𝑛𝑡𝑘(𝜉). Since 𝜉 is 𝑘-closed, 𝜉 = 𝐶𝑙𝑘(𝜉) =

 𝐼𝑛𝑡𝑘(𝜉)(since every 𝑘-closed set is 𝑘-open as well). Therefore, 𝑏𝑘(𝜉) = 𝜉\𝜉 = ∅. 

2. 𝐹𝑟𝑘(𝜉): The 𝑘-frontier of 𝜉, denoted 𝐹𝑟𝑘(𝜉), is 𝐶𝑙𝑘(𝜉)\𝐼𝑛𝑡𝑘(𝜉). Since 𝜉 is 𝑘-closed, 𝐶𝑙𝑘(𝜉) =

𝜉, and as mentioned earlier, 𝜉 = 𝐼𝑛𝑡𝑘(𝜉). Therefore, 𝐹𝑟𝑘(𝜉) = 𝐶𝑙𝑘(𝜉)\𝐼𝑛𝑡𝑘(𝜉) = 𝜉\𝜉 = ∅. So, 

𝑏𝑘(𝜉) = 𝐹𝑟𝑘(𝜉) = ∅. 

Example 2.35: Consider the top. sp.: 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 =  {∅, 𝑋, {𝑏}, {𝑏, 𝑐}}.Let's take 𝜉 = {𝑎, 𝑏, 𝑐}. 

We can see that 𝜉 is 𝑘-closed since it's equal to 𝐶𝑙𝑘(𝜉) = 𝜉. Now the 𝑘-border and 𝑘-frontier of 

𝜉: 𝑘-border of 𝜉 , (𝑏𝑘(𝜉)): 𝑏𝑘(𝜉) = 𝜉\𝐼𝑛𝑡𝑘(𝜉). Since 𝜉 is 𝑘-closed, 𝜉 = 𝐶𝑙𝑘(𝜉) = 𝐼𝑛𝑡𝑘(𝜉). 

Therefore, 𝑏𝑘(𝜉) = 𝜉\𝜉 = ∅.  and indeed, 𝑏𝑘( 𝜉) = 𝐹𝑟𝑘( 𝜉) = ∅, confirming the statement. 

Lemma 2.36: Let 𝑋 be a top. sp. and let  𝜉 ⊆ 𝑋. Then  𝜉 is 𝑘-closed iff the 𝑘-frontier of  𝜉, denoted 

𝐹𝑟𝑘( 𝜉), is a subset of  𝜉. 

Proof:  𝜉 is 𝑘-closed ⇒ 𝐹𝑟𝑘( 𝜉) ⊆  𝜉 . Assume that  𝜉 is 𝑘-closed. This means that  𝜉 = 𝐶𝑙𝑘( 𝜉). 

Now let's consider the 𝑘-frontier of  𝜉, 𝐹𝑟𝑘( 𝜉), which is 𝐶𝑙𝑘( 𝜉)\𝐼𝑛𝑡𝑘( 𝜉).Since  𝜉 is 𝑘-closed,  

𝜉 = 𝐶𝑙𝑘( 𝜉), and this implies that 𝐶𝑙𝑘( 𝜉) = 𝐼𝑛𝑡𝑘( 𝜉). Therefore, 𝐹𝑟𝑘( 𝜉) = 𝐶𝑙𝑘( 𝜉)\𝐼𝑛𝑡𝑘( 𝜉) =

 𝜉\ 𝜉 = ∅.An empty set is indeed a subset of any set, so 𝐹𝑟𝑘( 𝜉) ⊆  𝜉.  

𝐹𝑟𝑘( 𝜉) ⊆  𝜉 ⇒  𝜉 is 𝑘-closed. Assume that 𝐹𝑟𝑘( 𝜉) ⊆  𝜉. This means that every element in 

𝐹𝑟𝑘( 𝜉) is also an element of  𝜉. We need to show that  𝜉 is 𝑘-closed, meaning that  𝜉 = 𝐶𝑙𝑘( 𝜉). 

Let's consider a 𝑘-closed set that contains  𝜉, denoted 𝐶. We want to show that  𝜉 is contained in 

𝐶, and 𝐶 is contained in 𝜉. Since 𝐹𝑟𝑘(𝜉) ⊆ 𝜉, every point in 𝐹𝑟𝑘(𝜉)is also in 𝜉. Since 𝐹𝑟𝑘(𝜉) is 

part of 𝐶𝑙𝑘(𝜉), and 𝐶 is 𝑘-closed containing 𝜉, it must also contain 𝐹𝑟𝑘(𝜉). This implies that 𝐶 ⊆
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𝜉. On the other hand, since 𝜉 is contained in 𝐶, 𝐼𝑛𝑡𝑘(𝜉) is a subset of 𝐶 as well. This means that 

𝐶𝑙𝑘(𝐼𝑛𝑡𝑘(𝜉))is also a subset of 𝐶. Since 𝜉 = 𝐶𝑙𝑘(𝐼𝑛𝑡𝑘(𝜉)) (because 𝜉 is 𝑘-closed), this means 𝜉 

is a subset of 𝐶. Therefore, 𝜉 = 𝐶, and this shows that 𝜉 is contained in every 𝑘-closed set 

containing it, which means 𝜉 = 𝐶𝑙𝑘(𝜉). Hence, in this direction, 𝜉 is 𝑘-closed. Combining both 

directions, we conclude that 𝜉 is 𝑘-closed iff 𝐹𝑟𝑘(𝜉) ⊆ 𝜉. 

Definition 2.37: Let 𝑋 be a top. sp. and let 𝜉 ⊆ 𝑋. Then 𝐸𝑥𝑡𝑘(𝜉) = 𝐼𝑛𝑡𝑘(𝑋\𝜉) is called the 𝑘-

exterior of 𝜉. 

Example 2.38: Given the top. sp.  𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 =  {∅, 𝑋, {𝑎}, {𝑎, 𝑏}}. The family of all 𝑘-open 

sets, 𝜏𝑘  =  {∅, {𝑎}, {𝑎, 𝑏}, {𝑏}, {𝑐}, {𝑎, 𝑏, 𝑐}}. The  𝐸𝑥𝑡𝑘(𝜉) =  {𝑏} 

Theorem 2.39. Let 𝑋 be a top. sp. and let 𝜉 ⊆  𝐵 ⊆  𝑋. Then 

1. 𝐸𝑥𝑡𝑘(𝜉) is 𝑘-open. 

2. 𝐸𝑥𝑡𝑘(𝜉) =  𝑋\𝐶𝑙𝑘(𝜉). 

3. If 𝜉 ⊆  𝐵, then 𝐸𝑥𝑡𝑘(𝐵) ⊆ 𝐸𝑥𝑡𝑘(𝜉). 

4. 𝐸𝑥𝑡𝑘(𝜉 ∪ 𝐵) ⊆ 𝐸𝑥𝑡𝑘(𝜉) ∩ 𝐸𝑥𝑡𝑘(𝐵). 

5. 𝐸𝑥𝑡𝑘(𝜉 ∩ 𝐵) ⊇ 𝐸𝑥𝑡𝑘(𝜉) ∪ 𝐸𝑥𝑡𝑘(𝐵). 

6. 𝐸𝑥𝑡𝑘(𝑋) = ∅, 𝐸𝑥𝑡𝑘(∅) = 𝑋. 

7. 𝐸𝑥𝑡𝑘(𝜉) = 𝐸𝑥𝑡𝑘(𝑋\𝐸𝑥𝑡𝑘(𝜉)). 

8. 𝑋 = 𝐼𝑛𝑡𝑘(𝜉) ∪ 𝐸𝑥𝑡𝑘(𝜉) ∪ 𝐹𝑟𝑘(𝜉). 

Example2.40: Given the top. sp. 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 =  {∅, 𝑋, {𝑎}, {𝑎, 𝑏}}, Let's consider 𝜉 =  {𝑎, 𝑐}. 

1. 𝐸𝑥𝑡𝑘(𝜉) = 𝐼𝑛𝑡𝑘(𝑋\𝜉). Since 𝑋\𝜉 = {𝑏}, and {𝑏} is a 𝑘-open set contained in 

𝑋\𝜉, 𝐸𝑥𝑡𝑘(𝜉) =  {𝑏}. 

2. 𝐸𝑥𝑡𝑘(𝜉) =  𝑋\𝐶𝑙𝑘(𝜉);  𝐶𝑙𝑘(𝜉) = 𝜉 = {𝑎, 𝑐}, so 𝑋\𝐶𝑙𝑘(𝜉) = 𝑋\{𝑎, 𝑐} =  {𝑏}.  

3. If 𝜉 = {𝑎, 𝑐}, then 𝐸𝑥𝑡𝑘(𝐵) ⊆ 𝐸𝑥𝑡𝑘(𝜉) for any subset 𝐵 ⊇ 𝜉.  

4. 𝐸𝑥𝑡𝑘(𝜉 ∪ 𝐵) ⊆  𝐸𝑥𝑡𝑘(𝜉) ∩ 𝐸𝑥𝑡𝑘(𝐵) for any subset 𝐵 ⊇ 𝜉. 

5.  𝐸𝑥𝑡𝑘(𝜉 ∩ 𝐵) ⊇ 𝐸𝑥𝑡𝑘(𝜉) ∪ 𝐸𝑥𝑡𝑘(𝐵) for any subset 𝐵 ⊇ 𝜉. 

6. 𝐸𝑥𝑡𝑘(𝑋) = ∅, 𝐸𝑥𝑡𝑘(∅) = 𝑋. 

7. 𝐸𝑥𝑡𝑘(𝜉) = 𝐸𝑥𝑡𝑘(𝑋\𝐸𝑥𝑡𝑘(𝜉));  𝐸𝑥𝑡𝑘(𝜉) = {𝑏}, and 𝑋\𝐸𝑥𝑡𝑘(𝜉) =  {𝑏}, so 𝐸𝑥𝑡𝑘(𝜉) =

𝐸𝑥𝑡𝑘(𝑋\𝐸𝑥𝑡𝑘(𝜉)). 

8. 𝑋 = 𝐼𝑛𝑡𝑘(𝜉) ∪ 𝐸𝑥𝑡𝑘(𝜉) ∪ 𝐹𝑟𝑘(𝜉); 𝑋 = {𝑎, 𝑏, 𝑐} = 𝐼𝑛𝑡𝑘({𝑎, 𝑐}) ∪  𝐸𝑥𝑡𝑘({𝑎, 𝑐}) ∪

𝐹𝑟𝑘({𝑎, 𝑐}). 

Definition 2.41: A function 𝑓 ∶  (𝑋, 𝜏) →  (𝑌, 𝜎) is said to be: 

1. “Totally-continuous if 𝑓−1(𝑈)is a clopen set in 𝑋, for every open set 𝑈 in 𝑌.” 

2. “contra-continuous if 𝑓−1(𝑈) is a closed set in 𝑋, for every open set 𝑈 in 𝑌.” 

In these definitions, 𝑓−1(𝑈) denotes the preimage of the set 𝑈 under the function 𝑓. 
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Explanation 2.42: 

1. A function is totally-continuous if the preimage of every open set in the codomain 𝑌 is a 

clopen (both closed and open) set in the domain 𝑋. 

2. A function is contra-continuous if the preimage of every open set in the codomain 𝑌 is a 

closed set in the domain 𝑋. 

k-continuous functions and k-homeomorphism 

Within this section, we present novel categories of functions referred to as 𝑘-cont. funs, 𝑘 -open 

funs, 𝑘 -irresolute funs, 𝑘 -totally cont. funs, 𝑘 -contra-cont. funs, 𝑘 -homeomorphism and examine 

certain characteristics of these functions. 

Definition 3.1: A fun. 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is referred to as k-continuous if the inverse image 

𝑓−1(𝑈) is a 𝑘 -open in 𝑋 for every open  𝑈 in 𝑌. 

Example3.2: Let 𝑋 = {1, 2, 3}, 𝑌 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝜏 = {∅, 𝑋, {1}, {2}, {3}, {1, 2}, {2, 3}}, 𝜎 =

 {∅, 𝑌, {𝑎, 𝑏}, {𝑐, 𝑑}}.Consider 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) defined as follows: 𝑓(1) = 𝑎, 𝑓(2) = 𝑏, 𝑓(3) =

𝑐 .Now, let's verify whether this function is 𝑘 -continuous according to Definition 3.1.For every 

open set 𝑈 in 𝑌, let's check whether the preimage 𝑓−1(𝑈) is a 𝑘 -open set in 𝑋: 𝑈 = ∅, 𝑓−1(∅) =

∅, which is 𝑘 -open. 𝑈 = 𝑌, 𝑓−1(𝑌) = 𝑋, which is 𝑘 -open. 𝑈 = {𝑎, 𝑏}, 𝑓−1({𝑎, 𝑏}) = {1, 2}, 

which is 𝑘 -open (subset of {1, 2}). 𝑈 = {𝑐, 𝑑}, 𝑓−1({𝑐, 𝑑}) = {3}, which is 𝑘 -open. For every 

open set 𝑈 in 𝑌, the preimage 𝑓−1(𝑈) is a 𝑘-open set in 𝑋.  Therefore, the function 𝑓: (𝑋, 𝜏) →

(𝑌, 𝜎) is 𝑘 -continuous according to Definition 3.1 for the given top. sp. 𝜏 and 𝜎.  

Theorem 3.3: Every continuous function is 𝑘 -continuous.  

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a continuous function, where 𝑋 and 𝑌 are top. sp. with topologies 

𝜏 and 𝜎, respectively. To prove, for every open set 𝑈 in 𝑌, the inverse image 𝑓−1(𝑈) is a 𝑘-open 

set in 𝑋. By the definition of a continuous function, for every open set 𝑈 in 𝑌, the preimage 𝑓−1(𝑈) 

is an open set in 𝑋. Now we need to show that this preimage is also 𝑘-open. Consider any open 

set 𝑈 in 𝑌. We want to show that 𝑓−1(𝑈) is 𝑘-open in 𝑋. We know that 𝑓−1(𝑈) is an open set in 

𝑋 (because 𝑓 is continuous). Now, let's consider any subset 𝜉 of 𝑋. We need to show that 𝜉 ⊆

𝐶𝑙(𝜉 ∪ 𝐼𝑛𝑡(𝑓−1(𝑈))). Since 𝑓−1(𝑈) is open, 𝐼𝑛𝑡(𝑓−1(𝑈)) = 𝑓−1(𝑈) (the interior of an open set 

is the set itself). Therefore, we need to show that 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝑓−1(𝑈)). Since 𝐶𝑙(𝜉 ∪ 𝑓−1(𝑈)) is 

the smallest closed set containing 𝜉 ∪ 𝑓−1(𝑈), and 𝑓−1(𝑈) is open, we have 𝐶𝑙(𝜉 ∪ 𝑓−1(𝑈)) =

𝐶𝑙(𝜉) ∪ 𝑓−1(𝑈). Since 𝑓−1(𝑈)is open, 𝐶𝑙(𝜉) ∪ 𝑓−1(𝑈) is a closed set containing 𝜉. This implies 

that 𝜉 ⊆ 𝐶𝑙(𝜉) ⊆ 𝐶𝑙(𝜉) ∪ 𝑓−1(𝑈). Therefore, for every subset 𝜉 of 𝑋, 𝜉 ⊆ 𝐶𝑙(𝜉 ∪ 𝑓−1(𝑈)), which 

means that 𝑓−1(𝑈) is 𝑘-open. Since this holds for every open set 𝑈 in 𝑌, we have shown that the 

preimage 𝑓−1(𝑈) is 𝑘-open for every open set 𝑈 in 𝑌. Thus, 𝑓 is 𝑘-continuous. 

Remark 3.4: The converse of Theorem 3.3 is not necessarily true. 
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However, the converse of this statement, which would imply that if a function is k-continuous, it 

is also continuous, is not always true. In other words, there exist 𝑘- continuous function  that are 

not continuous.  

Example  3.5:  

 Case 1: Consider the top. sp.: 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {∅, 𝑋, {𝑎}, {𝑐}, {𝑎, 𝑐}},Let 𝑌 =  𝑋, and let the 

identity function be defined as 𝑓(𝑥) = 𝑥 for all 𝑥 ∈ 𝑋.This function is 𝑘-continuous, because for 

any open set 𝑈 in 𝑋, 𝑓−1(𝑈)is the same as 𝑈, which is a 𝑘-open set in 𝑋.  However, this function 

is not continuous. For example, consider the open set 𝑈 = {𝑎} in 𝑋. The preimage𝑓−1(𝑈) is {𝑎}, 

which is not an open set in 𝑋 with respect to the given topology 𝜏. 

Case 2:  Consider the same top. sp. 𝑋 and 𝜏 as in the previous example. Let 𝑌 = {𝑝}, where 𝑝 is a 

single point, and let the constant function be defined as 𝑓(𝑥) = 𝑝, ∀ x ∈  X . This function is 𝑘-

continuous, as for any open set 𝑈 in 𝑌 (which is either ∅ or 𝑌), 𝑓−1(𝑈) is either ∅ or 𝑋 (which is 

𝑘-open). However, this function is not continuous, as the preimage of any open set 𝑈 in 𝑌 (which 

is either ∅ or 𝑌) is either ∅ or 𝑋 (which is not open in 𝑋). 

Theorem 3.6. If 𝑓: (𝑋, 𝜏) → 𝑌, 𝜎) is 𝑘-continuous and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) is continuous, then 𝑔 ◦

𝑓 ∶ (𝑋, 𝜏) → (𝑍, 𝜂) is 𝑘-continuous.  

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a 𝑘-continuous function, and let 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) be a 

continuous function. We want to prove that the composite function 𝑔 ◦ 𝑓 is k-continuous. By the 

𝑘-continuity of 𝑓, for every open set 𝑈 in 𝑌, the preimage 𝑓−1(𝑈) is a 𝑘-open set in 𝑋. By the 

continuity of 𝑔, for every open set 𝑉 in 𝑍, the preimage 𝑔−1(𝑉) is an open set in 𝑌. Now we want 

to show that the preimage (𝑔 ◦ 𝑓)−1(𝑉) is 𝑘-open for every open set 𝑉 in 𝑍.Notice that 

(𝑔 ◦ 𝑓)−1(𝑉) = 𝑓−1(𝑔−1(𝑉)), which is the preimage of 𝑔−1(𝑉) under 𝑓. Since 𝑓−1(𝑔−1(𝑉)) is 

the preimage of an open set 𝑔−1(𝑉) in 𝑌 under the 𝑘-continuous function 𝑓, it is a 𝑘-open set in 

𝑋. Therefore, we have shown that for every open set 𝑉 in 𝑍, the preimage (𝑔 ◦ 𝑓)−1(𝑉) =

𝑓−1(𝑔−1(𝑉)) is 𝑘-open in 𝑋. This holds for every open set 𝑉 in 𝑍, so the composite function 𝑔 ◦

𝑓  is 𝑘-continuous. 

Definition 3.7: A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is said to be 𝑘-open if for every open set 𝑈 in 𝑋, the 

image 𝑓(𝑈) is a 𝑘-open set in 𝑌. 

Theorem 3.8: Every function that preserves openness is a 𝑘-open function. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be an open function, where 𝑋 and 𝑌 are top. sp. with topologies 𝜏 

and 𝜎, respectively. We want to show that for every open set 𝑈 in 𝑋, the image 𝑓(𝑈) is a 𝑘-open 

set in 𝑌. By the definition of an open function, for every open set 𝑈 in 𝑋, the image 𝑓(𝑈) is an 

open set in 𝑌. Now we need to show that this image 𝑓(𝑈) is also 𝑘-open. Consider any open set 𝑈 

in 𝑋. We want to show that 𝑓(𝑈) is 𝑘-open in 𝑌. Since 𝑓(𝑈) is open in 𝑌 (by the assumption that 

𝑓 is an open function), it is also 𝑘-open, as every open set is trivially 𝑘-open. Therefore, we have 
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shown that for every open set 𝑈 in 𝑋, the image 𝑓(𝑈) is 𝑘-open in 𝑌. This holds for every open 

set 𝑈 in 𝑋, so we have proved that every open function is 𝑘-open. 

Remark 3.9. The opposite of Theorem 3.3 does not necessarily hold, as demonstrated in the 

subsequent example. 

Example 3.10. In Example 3.3, the function of identity𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is 𝑘-open but not open. 

Theorem 3.11: If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is open and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) is 𝑘-open, then the composite 

function 𝑔 ∘ 𝑓: (𝑋, 𝜏) → (𝑍, 𝜂) is 𝑘-open. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be an open function, and let 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) be a 𝑘-open function.  

We want to prove that for every open set 𝑈 in 𝑋, the image (𝑔 ∘ 𝑓)(𝑈) = 𝑔(𝑓(𝑈)) is a 𝑘-open set 

in 𝑍. Since 𝑓 is open, for every open set 𝑈 in 𝑋, the image 𝑓(𝑈) is an open set in 𝑌. Since 𝑔 is 𝑘-

open, for every open set 𝑉 in 𝑌, the image 𝑔(𝑉) is a 𝑘-open set in 𝑍.  Now, to prove, the image 

(𝑔 ∘ 𝑓)(𝑈) = 𝑔(𝑓(𝑈)) is 𝑘-open in 𝑍.  Consider any open set 𝑈 in 𝑋. We want to show that 

𝑔(𝑓(𝑈)) is 𝑘-open in 𝑍.  Since 𝑓(𝑈) is open in 𝑌 (by the assumption that 𝑓 is an open function), 

and 𝑔 is 𝑘-open, the image 𝑔(𝑓(𝑈)) is a 𝑘-open set in 𝑍. Therefore, for every open set 𝑈 in 𝑋, the 

image (𝑔 ∘ 𝑓)(𝑈) = 𝑔(𝑓(𝑈)) is 𝑘-open in 𝑍.  This holds for every open set 𝑈 in 𝑋, so the 

composite function 𝑔 ∘ 𝑓  is 𝑘-open.  

Definition 3.12: A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is said to be 𝑘-irresolute if for every 𝑘-open set 𝑈 

in 𝑌, the preimage 𝑓−1(𝑈) is a 𝑘-open set in 𝑋.  In simpler terms, a function is k-irresolute if the 

preimage of every 𝑘-open set under that function is a 𝑘-open set. This definition indicates that a 

𝑘-irresolute function preserves 𝑘-openness of sets in the preimage. 

Example3.13: Consider the following top. sp. and function : 𝑋 = {1, 2, 3}, 𝑌 = {𝑎, 𝑏, 𝑐}, 𝜏 =

{∅, 𝑋, {1}, {2}, {3}, {1, 2}}, 𝜎 =  {∅, 𝑌, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}}Let's define a function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) 

as follows: 𝑓(1) = 𝑎, 𝑓(2) = 𝑏, 𝑓(3) = 𝑐 . We will now determine whether the function 𝑓 is 𝑘-

irresolute according to Definition 3.12. For every 𝑘-open set 𝑈 in 𝑌, we need to check whether the 

preimage 𝑓−1(𝑈) is 𝑘-open in 𝑋. Let's consider the possible 𝑘-open sets in 𝑌: 𝑈 = ∅, 𝑓−1(∅) =

∅, which is 𝑘-open. 𝑈 = 𝑌, 𝑓−1(𝑌) = 𝑋, which is 𝑘-open. 𝑈 = {𝑎}, 𝑓−1({𝑎}) = {1}, which is 𝑘-

open. 𝑈 = {𝑏}, 𝑓−1({𝑏}) = {2},which is 𝑘-open. 𝑈 = {𝑐}, 𝑓−1({𝑐}) = {3}, which is 𝑘-open. 𝑈 =

{𝑎, 𝑏}, 𝑓−1({𝑎, 𝑏}) = {1, 2}, which is 𝑘-open. For every 𝑘-open set 𝑈 in 𝑌, the preimage 𝑓−1(𝑈) 

is 𝑘-open in 𝑋. Therefore, the function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is 𝑘-irresolute according to Definition 

3.13 for the given top. sp. 𝜏 and 𝜎. 

Theorem 3.14: Every continuous function is k-irresolute. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a continuous function, where 𝑋 and 𝑌 are top. sp. with topologies 

𝜏 and 𝜎, respectively. We want to prove that for every 𝑘-open set 𝑈 in 𝑌, the preimage 𝑓−1(𝑈) is 

a 𝑘-open set in 𝑋. By the continuity of 𝑓, for every open set 𝑈 in 𝑌, the preimage 𝑓−1(𝑈) is an 

open set in 𝑋. Now, let's consider a 𝑘-open set 𝑈 in 𝑌. Since every 𝑘-open set is open, 𝑈 is also 

open. Therefore, the preimage 𝑓−1(𝑈), which is open due to the continuity of 𝑓, is also a 𝑘-open 



Ahmed M. Rajab et.al. Properties and characterizations of k-continuous functions and k-open sets in topological 

spaces 

 

                            International Journal of Science and Healthcare Research (www.ijshr.com)  420 

Volume 8; Issue: 3; July-September 2023 

set. This holds for every 𝑘-open set 𝑈 in 𝑌. Hence, 𝑓−1(𝑈) is 𝑘-open for every 𝑘-open set 𝑈 in 𝑌. 

Thus, we have proved that every continuous function is 𝑘-irresolute. 

Theorem 3.15: Every 𝑘-irresolute function is 𝑘-continuous. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a 𝑘-irresolute function, where 𝑋 and 𝑌 are top. sp. with topologies 

𝜏 and 𝜎, respectively. We want to prove that for every open set 𝑈 in 𝑌, the preimage 𝑓−1(𝑈) is 𝑘-

open in 𝑋.  By the definition of a 𝑘-irresolute function, for every 𝑘-open set 𝑈 in 𝑌, the preimage 

𝑓−1(𝑈) is 𝑘-open in 𝑋.  Now, consider an open set 𝑈 in 𝑌. We want to show that the preimage 

𝑓−1(𝑈)  is 𝑘-open in 𝑋.  Since every open set is also 𝑘-open, the preimage 𝑓−1(𝑈)) is 𝑘-open in 

𝑋 due to the 𝑘-irresolute property of 𝑓.  This holds for every open set 𝑈 in 𝑌. Hence, the preimage 

𝑓−1(𝑈)  is 𝑘-open for every open set 𝑈 in 𝑌.  Therefore, we have proved that every 𝑘-irresolute 

function is 𝑘-continuous. 

Theorem 3.16: The composition of two 𝑘-irresolute function is also 𝑘-irresolute.  

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) be two 𝑘-irresolute functions, where 𝑋, 𝑌, and 

𝑍 are top. sp. with topologies τ, σ, and η, respectively. To prove that the composition 𝑔 ∘

𝑓: (𝑋, 𝜏) → (𝑍, 𝜂) is 𝑘-irresolute. By the 𝑘-irresolute property of 𝑓, for every 𝑘-open set 𝑈 in 𝑌, 

the preimage 𝑓−1(𝑈)  is 𝑘-open in 𝑋. Similarly, by the 𝑘-irresolute property of 𝑔, for every 𝑘-

open set 𝑉 in 𝑍, the preimage 𝑔−1(𝑉) is 𝑘-open in 𝑌. Now, consider a 𝑘-open set 𝑉 in 𝑍. We want 

to show that the preimage (𝑔 ∘ 𝑓)−1(𝑉) is 𝑘-open in 𝑋. Since 𝑔 is 𝑘-irresolute, the preimage 

𝑔−1(𝑉) is 𝑘-open in 𝑌. Since 𝑓 is 𝑘-irresolute, the preimage 𝑓−1(𝑔−1(𝑉)) is 𝑘-open in 𝑋. 

However, the preimage (𝑔𝑓)−1(𝑉) is precisely 𝑓−1(𝑔−1(𝑉)). Thus, the preimage(𝑔 ∘ 𝑓)−1(𝑉) is 

𝑘-open in 𝑋. This holds for every 𝑘-open set 𝑉 in 𝑍. Hence, the preimage (𝑔 ∘ 𝑓)−1(𝑉) is 𝑘-open 

for every 𝑘-open set 𝑉 in 𝑍. Therefore, we have proved that the composition 𝑔 ◦ 𝑓 is 𝑘-irresolute.  

Theorem 3.17: If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) is 𝑘-irresolute and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) is 𝑘-continuous, then 

the composition 𝑔 ∘ 𝑓: (𝑋, 𝜏) → (𝑍, 𝜂) is 𝑘-irresolute.  

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a 𝑘-irresolute function, and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) be a 𝑘-continuous 

function. To prove that the composition 𝑔 ∘ 𝑓: (𝑋, 𝜏) → (𝑍, 𝜂) is 𝑘-irresolute. By the 𝑘-irresolute 

property of 𝑓, for every 𝑘-open set 𝑈 in 𝑌, the preimage 𝑓−1(𝑈) is 𝑘-open in 𝑋. By the 𝑘-

continuous property of 𝑔, for every 𝑘-open set 𝑉 in 𝑍, the preimage 𝑔−1(𝑉) is 𝑘-open in 𝑌. Now, 

consider a 𝑘-open set 𝑉 in 𝑍. We want to show that the preimage (𝑔 ∘ 𝑓)−1(𝑉) is 𝑘-open in 𝑋. 

Since 𝑔 is 𝑘-continuous, the preimage 𝑔−1(𝑉) is 𝑘-open in 𝑌. Since 𝑓 is 𝑘-irresolute, the preimage 

 𝑓−1(𝑔−1(𝑉)) is 𝑘-open in 𝑋. However, the preimage (𝑔 ∘ 𝑓)−1(𝑉) is precisely 𝑓−1(𝑔−1(𝑉)). 

Thus, the preimage (𝑔 ∘ 𝑓)−1(𝑉) is 𝑘-open in 𝑋. This holds for every 𝑘-open set 𝑉 in 𝑍. Hence, 

the preimage (𝑔 ∘ 𝑓)−1(𝑉) is 𝑘-open for every 𝑘-open set 𝑉 in 𝑍. Therefore, we have proved that 

the composition 𝑔 ∘ 𝑓 is 𝑘-irresolute. 
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Definition 3.18: A bijective function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is said to be a 𝑘-homeomorphism if 𝑓 is 

both 𝑘-continuous and 𝑘-open.  In simpler terms, a 𝑘-homeomorphism is a bijective function 

between top. sp. that preserves the 𝑘-openness and k-continuity properties. 

Theorem 3.19. If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is homomorphism, then 𝑓 is 𝑘-homomorphism  

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)be a homeomorphism between the top. sp. 𝑋 and 𝑌. To show that 𝑓 

is also a 𝑘-homeomorphism. Since 𝑓 is a homeomorphism, it is both continuous and open. This 

means that for every open set 𝑈 in 𝑋, the image 𝑓(𝑈) is open in 𝑌. Similarly, for every open set 𝑉 

in 𝑌, the preimage 𝑓−1(𝑉) is open in 𝑋. We will now prove that 𝑓 is 𝑘-continuous and 𝑘-open. 

K-Continuity: Consider a 𝑘-open set 𝑈 in 𝑌. We want to show that the preimage 𝑓−1(𝑈) is 𝑘-

open in 𝑋. Since 𝑓 is continuous, the preimage 𝑓−1(𝑈) is open in 𝑋. Since every open set is also 

𝑘-open, the preimage 𝑓−1(𝑈) is 𝑘-open in 𝑋. Therefore, 𝑓 is 𝑘-continuous. 

K-Openness: Consider a 𝑘-open set 𝑉 in 𝑋. To show that the image 𝑓(𝑉) is 𝑘-open in 𝑌. Since 𝑓 

is open, the image𝑓(𝑉) is open in 𝑌. Since every open set is also 𝑘-open, the image 𝑓(𝑉) is 𝑘-

open in 𝑌. Therefore, 𝑓 is 𝑘-open. Since 𝑓 is both 𝑘-continuous and 𝑘-open, it is a 𝑘-

homeomorphism.  

Remark 3.20. The converse of the Theorem 3.19, need not be true as shown in the following 

example. Example  3.21. Let 𝑋 = 𝑌 = {𝑎, 𝑏, 𝑐}, 𝜏 =  {∅, 𝑋, {𝑎, 𝑐}}, 𝜎 = {∅, 𝑌, {𝑏, 𝑐}} .Then  𝜏𝑘  =

 {∅, {𝑎}, {𝑐}, {𝑎, 𝑐}} and  𝜎𝑘 =  {∅, {𝑏, 𝑐}}.  Now, let's consider the function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) 

defined as follows:𝑓(𝑎) = 𝑏 , 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑏 ,We will show that 𝑓 is a 𝑘-homeomorphism, 

but it is not a homeomorphism.  

K-Continuity and K-Openness: For every 𝑘-open set 𝑈 in 𝑌, the preimage 𝑓−1(𝑈) is 𝑘-open in 

𝑋 due to the structure of the topologies and the function 𝑓. Similarly, for every k-open set 𝑉 in 𝑋, 

the image 𝑓(𝑉) is 𝑘-open in 𝑌. However, 𝑓 is not a homeomorphism because it is not a bijection. 

Specifically, both 𝑏 and 𝑐 in 𝑌 are mapped to 𝑏 in 𝑋 by 𝑓, which makes 𝑓 not bijective.  

Definition 3.22. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is said to be 𝑘-totally continuous, if 𝑓−1(𝑈) is 

clopen set in 𝑋 for every 𝑘-open set 𝑈 in 𝑌. 

Theorem 3.23: Every 𝑘-totally continuous function is totally continuous. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)be a k-totally continuous function. To show that 𝑓 is totally 

continuous. Recall that a function is totally continuous if the preimage of every open set in 𝑌 is a 

clopen set in 𝑋. Let 𝑈 be an open set in 𝑌. We want to show that the preimage 𝑓−1(𝑈) is clopen 

in 𝑋. Since 𝑓 is 𝑘-totally continuous, the preimage 𝑓−1(𝑈) is clopen for every 𝑘-open set 𝑈 in 𝑌. 

Since every open set in 𝑌 is also a 𝑘-open set, this implies that the preimage 𝑓−1(𝑈) is clopen for 

every open set 𝑈 in 𝑌. Therefore, 𝑓 is totally continuous. 

Theorem 3.24: Every 𝑘-totally continuous function is 𝑘-irresolute. 
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Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)be a k-totally continuous function. We want to show that 𝑓 is 𝑘-

irresolute. Recall that a function is 𝑘-irresolute if the preimage of every 𝑘-open set in 𝑌 is a 𝑘-

open set in 𝑋. Let 𝑈 be a 𝑘-open set in 𝑌. We want to show that the preimage 𝑓−1(𝑈) is 𝑘-open in 

𝑋. Since 𝑓 is 𝑘-totally continuous, the preimage 𝑓−1(𝑈) is clopen for every 𝑘-open set 𝑈 in 𝑌. 

Since every 𝑘-open set is also an open set, this implies that the preimage 𝑓−1(𝑈) is clopen for 

every open set 𝑈 in 𝑌. And since every open set is both closed and open, it follows that the 

preimage 𝑓−1(𝑈) is both closed and open in 𝑋. Since every 𝑘-open set is also open, the preimage 

𝑓−1(𝑈) is 𝑘-open in 𝑋. Therefore, 𝑓 is 𝑘-irresolute.  

Remark 3.25: The converse of the Theorem 3.24, need not be true as shown in the following 

example. Example 3.26: In Example Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝑌 = {1, 2, 3}, 𝜏 = {∅, 𝑋, {𝑏}}, 𝜎 =

{∅, 𝑌, {1}, {2, 3}}. A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is defined by 𝑓({𝑎}) = {2}, 𝑓({𝑏}) =

{1}, 𝑓({𝑐}) = {3}., the identity function 𝑓 : (X, τ) → (Y, σ) is 𝑘-irresolute but not 𝑘-totally 

continuous. Consider the following top. sp. and function, 𝜏𝑘 = {∅, {𝑏}}, 𝜎𝑘 = {∅, {1}, {2, 3}}. We 

will analyze whether 𝑓 is 𝑘-irresolute and 𝑘-totally continuous. 

𝑘-Irresoluteness: For every 𝑘-open set 𝑈 in 𝑌, the preimage 𝑓−1(𝑈) is 𝑘-open in 𝑋 due to the 

structure of the function 𝑓. However, 𝑓 is not an open function, which means it is not 𝑘-irresolute. 

K-Totally Continuous: We will analyze the function 𝑓−1({1}). The preimage 𝑓−1({1}) = {𝑏}, 

which is a clopen set in 𝑋. However, {𝑏} is not a 𝑘-open set in 𝑋 since it doesn't satisfy the 

requirement for 𝑘-openness (it should be contained in the closure of the union of a 𝑘-open set and 

𝑋). Therefore, the identity function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is 𝑘-irresolute but not 𝑘-totally continuous. 

Theorem 3.27: The composition of two k-totally continuous functions is also k-totally continuous. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) be two 𝑘-totally continuous functions. We 

want to show that the composition 𝑔 ◦  𝑓: (𝑋, 𝜏) → (𝑍, 𝜂) is also 𝑘-totally continuous. Recall that 

a function is 𝑘-totally continuous if the preimage of every 𝑘-open set is clopen. Let 𝑈 be a 𝑘-open 

set in 𝑍. We want to show that the preimage (𝑔 ◦ 𝑓)−1(𝑈) is clopen in 𝑋. Since 𝑔 is 𝑘-totally 

continuous, the preimage 𝑔−1(𝑈) is clopen for every 𝑘-open set 𝑈 in 𝑍. Similarly, since 𝑓 is k-

totally continuous, the preimage 𝑓−1(𝑔−1(𝑈)) is clopen for every 𝑘-open set 𝑈 in 𝑍. Now, notice 

that (𝑔 ◦ 𝑓)−1(𝑈)  =  𝑓−1(𝑔−1(𝑈)). Since the preimage 𝑓−1(𝑔−1(𝑈)) is clopen for every 𝑘-

open set 𝑈 in 𝑍, this implies that (𝑔 ◦ 𝑓)−1(𝑈) is clopen for every 𝑘-open set 𝑈 in 𝑍. Therefore, 

the composition 𝑔 ◦ 𝑓 is 𝑘-totally continuous. 

Theorem 3.28:  If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is k-totally continuous and 𝑔 ∶  (𝑌, 𝜎) → (𝑍, 𝜂) is 𝑘-

irresolute, then the composition 𝑔 ◦ 𝑓 ∶ (𝑋, 𝜏) → (𝑍, 𝜂) is 𝑘-totally continuous. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)be a 𝑘-totally continuous function and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) be a 𝑘-

irresolute function. We want to show that the composition 𝑔 ◦ 𝑓 is k-totally continuous. Recall 

that a function is 𝑘-totally continuous if the preimage of every 𝑘-open set is clopen. Let 𝑈 be a 𝑘-

open set in 𝑍. We want to show that the preimage (𝑔 ◦ 𝑓)−1(𝑈) is clopen in 𝑋. Since 𝑔 is 𝑘-
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irresolute, the preimage 𝑔−1(𝑈) is 𝑘-open in 𝑌 for every 𝑘-open set 𝑈 in 𝑍.  Also, since 𝑓 is 𝑘-

totally continuous, the preimage 𝑓−1(𝑔−1(𝑈)) is clopen in 𝑋 for every 𝑘-open set 𝑈 in 𝑍.  Now, 

notice that (𝑔 ◦ 𝑓)−1(𝑈) = 𝑓−1(𝑔−1(𝑈)). Since the preimage 𝑓−1(𝑔−1(𝑈)) is clopen for every 

𝑘-open set 𝑈 in 𝑍, this implies that (𝑔 ◦ 𝑓)−1(𝑈) is clopen for every 𝑘-open set 𝑈 in 𝑍. Therefore, 

the composition 𝑔 ◦ 𝑓 is 𝑘-totally continuous. 

Theorem 3.29: If 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is 𝑘-totally continuous and 𝑔 ∶ (𝑌, 𝜎) → (𝑍, 𝜂) is 𝑘-

continuous, then the composition 𝑔 ◦ 𝑓 ∶ (𝑋, 𝜏) → (𝑍, 𝜂) is totally continuous. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a k-totally continuous function and 𝑔: (𝑌, 𝜎) → (𝑍, 𝜂) be a 𝑘-

continuous function. We want to show that the composition 𝑔 ◦ 𝑓 is totally continuous. Recall 

that a function is totally continuous if the preimage of every open set is a clopen set. Let 𝑈 be an 

open set in 𝑍. We want to show that the preimage (𝑔 ◦ 𝑓)−1(𝑈) is clopen in 𝑋. Since 𝑔 is 𝑘-

continuous, the preimage 𝑔−1(𝑈) is 𝑘-open in 𝑌 for every open set 𝑈 in 𝑍. Also, since 𝑓 is 𝑘-

totally continuous, the preimage 𝑓−1(𝑔−1(𝑈)) is clopen in 𝑋 for every open set 𝑈 in 𝑍. Now, 

notice that (𝑔 ◦ 𝑓)−1(𝑈) = 𝑓−1(𝑔−1(𝑈))..  Since the preimage𝑓−1(𝑔−1(𝑈)). is clopen for every 

open set 𝑈 in 𝑍, this implies that (𝑔 ◦ 𝑓)−1(𝑈) is clopen for every open set 𝑈 in 𝑍. Therefore, the 

composition 𝑔 ◦  𝑓 is totally continuous. 

Definition 3.30: A function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎)is said to be 𝑘-contra-continuous if the preimage 

𝑓−1(𝑈) is 𝑘-closed in 𝑋 for every open set 𝑈 in 𝑌. In other words, a function is 𝑘-contra-

continuous if the inverse image of every open set in the codomain is a 𝑘-closed set in the domain. 

Theorem 3.31: Every contra-continuous function is 𝑘-contra-continuous. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a contra-continuous function. We want to show that 𝑓 is also 𝑘-

contra-continuous. Recall that a function is contra-continuous if the preimage of every open set is 

closed. A function is 𝑘-contra-continuous if the preimage of every open set is 𝑘-closed. Let 𝑈 be 

an open set in 𝑌. Since 𝑓 is contra-continuous, the preimage 𝑓−1(𝑈) is closed in 𝑋 for every open 

set 𝑈 in 𝑌. Now, since closed sets are a subset of 𝑘-closed sets, it follows that the preimage 𝑓−1(𝑈) 

is also 𝑘-closed in 𝑋 for every open set 𝑈 in 𝑌. Therefore, the function 𝑓 is 𝑘-contra-continuous. 

Theorem 3.32: Every totally continuous function is k-contra-continuous. 

Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎) be a totally continuous function. We want to show that 𝑓 is also 𝑘-

contra-continuous. Recall that a function is totally continuous if the preimage of every open set is 

clopen. A function is 𝑘-contra-continuous if the preimage of every open set is 𝑘-closed. Let 𝑈 be 

an open set in 𝑌. Since 𝑓 is totally continuous, the preimage 𝑓−1(𝑈) is clopen in 𝑋 for every open 

set 𝑈 in 𝑌. Since closed sets are a subset of 𝑘-closed sets, it follows that the preimage 𝑓−1(𝑈) is 

also 𝑘-closed in 𝑋 for every open set 𝑈 in 𝑌. Therefore, the function 𝑓 is 𝑘-contra-continuous. 

Remark and example 3.33: The converse of Theorem 3.32. Consider the following top. sp. and 

function: 𝑋 = 𝑌 = {𝑎, 𝑏, 𝑐}, 𝜏 = {∅, 𝑋, {𝑏}, {𝑏, 𝑐}}, 𝜎 = {∅, 𝑌, {𝑏}}, 𝜏𝑘 = {∅, {𝑏}, {𝑏, 𝑐}}, 𝜎𝑘 =

{∅, {𝑏}}. Now let's analyze the given identity function 𝑓: (𝑋, 𝜏) → (𝑌, 𝜎):The identity function is 
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defined as: 𝑓(𝑥) = 𝑥 for all 𝑥 ∈  𝑋. We want to determine whether the identity function is 𝑘-

contra-continuous but not totally continuous. Recall that a function is 𝑘-contra-continuous if the 

preimage of every open set is 𝑘-closed. Let 𝑈 be an open set in 𝑌. Since the open sets in 𝑌 are 

{∅, {𝑏}}, we need to consider the preimages 𝑓−1(∅) and 𝑓−1({𝑏}). 𝑓−1(∅)  =  ∅, which is 𝑘-

closed.𝑓−1({𝑏})  =  {𝑏}, which is also 𝑘-closed. Since the preimages of all open sets are k-closed, 

the identity function is 𝑘-contra-continuous. However, the identity function maps open sets to open 

sets, and closed sets to closed sets, preserving the topology. Therefore, it is also totally continuous. 

CONCLUSION 

The exploration of 𝑘-open sets and their associated concepts has provided a deeper understanding 

of the intricate relationships and properties within top. sp.. The journey began with the introduction 

of 𝑘-open sets and the unveiling of their unique characteristics. This led to the unveiling of a 

plethora of concepts, such as k-interior, k-closure, k-limit points, k-derived sets, k-borders, k-

frontiers, and k-exteriors. Each of these concepts added a layer of complexity and richness to the 

study of topology. 

Throughout the investigation, a variety of theorems and propositions were established, revealing 

the interconnectedness of these concepts. Notably, the equivalence of certain properties, such as 

the relationship between k-limit points and k-closures, provided a deeper insight into the nature of 

top. sp.. The introduction of k-functions, including k-continuous, k-irresolute, and k-totally 

continuous functions, expanded the exploration into the realm of functions and their interactions 

with k-open sets. 

It was clear from the examples and counterexamples provided that not all properties held 

universally. The exploration of these counterexamples emphasized the importance of 

understanding the specific conditions and contexts in which certain relationships and properties 

are valid. This added a layer of nuance to the study, reminding us that topology is a field rich in 

intricacies and exceptions. 

The journey through k-open sets and related concepts ultimately contributed to a broader 

appreciation of the depth and complexity of topology. The concrete examples, rigorous definitions, 

and intricate theorems illuminated the landscape of top. sp., providing a fresh perspective on how 

subsets, functions, and open sets interact. This exploration serves as a reminder that the world of 

topology is both fascinating and challenging, inviting further investigation and discovery. 

In conclusion, the study of k-open sets and their properties has enriched our understanding of 

topology and its various facets. The concepts, theorems, and examples presented have provided a 

comprehensive view of the intricate relationships that govern top. sp., setting the stage for further 

exploration and inquiry into the world of mathematics. 

 

Declaration by Authors 

Acknowledgement: None 

Source of Funding: None 

Conflict of Interest: The authors declare no conflict of interest. 

 
REFERENCES 

1. N. Biswas, "Some Mappings in Topological Spaces". Bull. Cal. Math. Soc, vol. 61, pp.127-133, 1969 

2. S.G. Crossley and S. K. Hildebrand, "Semi-Topological Properties", Fund, Math., vol. 74, pp. 233-254, 

1972 

3. E. Ekici and M. Caldas, slightly continuous functions, Bol. Soc. Para Mat., 22(2004), 63 - 74. 



Ahmed M. Rajab et.al. Properties and characterizations of k-continuous functions and k-open sets in topological 

spaces 

 

                            International Journal of Science and Healthcare Research (www.ijshr.com)  425 

Volume 8; Issue: 3; July-September 2023 

4. J. Donchev, Contra continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 

19 (1996), 303-310. 

5. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970. 

6. R. L. Ellis, A non-Archimedean analogue of the Tietze-Urysohn extension theorem, Nederl. Akad. 

Wetensch. Proc. Ser. A, 70 (1967), 332-333. 

7. R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 

50 (1974),169-185. 

8. S. N. Maheshwari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. 

S.), 22(1978),27-29. 

9. J. Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar. 54, no. 12(1989), 

51-55. 

10. T. Noiri, Super continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15(1984), 

241-250. 

11. Ahmed M. Rajab, Ohood A. Hadi, Ameer K. Abdulaal, Topological entropy and Topologically Mixing 

Property in b-Topological Spaces. Galore International Journal of Applied Sciences and Humanities. 

Vol. 7; Issue: 3; July-Sept. 2023 DOI: https://doi.org/10.52403/gijash.20230305  

12. Ahmed M. Rajab, Dhfar Z. Ali, Ohood A. Hadi. Decomposition of Pre-β- Irresolute   Maps and g- 

Closed Sets in Topological Space. Volume 10; Issue 7; July 2023, 

DOI:  https://doi.org/10.52403/ijrr.202307103 
13. Ahmed M. Rajab, on 𝛽-mixing for dynamical systems.MJES.Vol.2, issue 1,2012 

14. Rewayda Razaq Mohsin, Ahmed M. Rajab and Enas Y. Abdalla. Pairwise Separation Axioms and 

Compact Double Topological Space, journal of Al-Qadisiyah for Computer Science and 

Mathematics3nd. Scientific Conference 19-20/ APRIL -2011Vol 3 No.2 Year 2011 

 

 

How to cite this article: Ahmed M. Rajab, Hawraa S. Abu Hamd, Eqbal N. Hameed. Properties and 

characterizations of k-continuous functions and k-open sets in topological spaces. International Journal of 

Science & Healthcare Research. 2023; 8(3): 405-425. DOI:  https://doi.org/10.52403/ijshr.20230355 

 

 

****** 

https://doi.org/10.52403/gijash.20230305
https://doi.org/10.52403/ijrr.202307103
https://doi.org/10.52403/

