Preventive Practices Against COVID-19: Comparison Between Gender in Klang Valley, Malaysia

Muhammad Azmi Kamaruddean¹, Auni Widad Mohd Yusof², Muhammad Suffi Abdul Kadir³, Jonathan Viven P. Dorai⁴, Sabariah Abd Hamid⁵

^{1,2,3,4,5}Faculty of Medicine, University of Cyberjaya, Malaysia

Corresponding Author: Muhammad Azmi Kamaruddean

DOI: https://doi.org/10.52403/ijshr.20221001

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease that spreads through respiratory droplets carrying the virus. The outbreak was previously declared as a global pandemic and raised international concern. As the preventive practices are very critical, this study aims to determine the preventive practices against COVID-19, especially among gender in Klang Valley, Malaysia.

An online cross-sectional study was conducted among the community in Klang Valley who were selected through convenience sampling. Malaysian aged 18-year-old and above, residing in that area were studied using a set of validated questionnaires via google form. The data were analyzed using JASP.

The prevalence of poor prevention practices against COVID-19 was significantly higher in male (88.9%) as compared to female (57.3%) (p-value <0.001). Higher prevalence of poor practices among males were reported in hand hygiene (63.0%), wearing mask (18.5%), sanitization (74.0%), abiding authority (14.8%) and self-initiative on COVID-19 prevention (37.0%).

It is important to provide health education to encourage adequate preventive practices against COVID-19 among the communities, more specifically among males.

Keywords: preventive practices, prevention, gender, COVID-19, Klang Valley

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a disease caused by a virus named SARS-CoV-2 and was discovered in December 2019 in Wuhan, China. It is very contagious and has quickly spread around the world. ^[1] The most frequent mode of transmission of COVID-19 is through inhalation of infected respiratory fluids or by touching faces without cleaning hands following exposure to contaminated surfaces. ^[2]

Rhinitis (66.7%), fever (19.7%) and cough (15.2%) were the most common clinical characteristics at the outset of illness in a study of 147 hospitalized patients in Malaysia. ^[3] WHO has devised protective measures for COVID-19 which are getting vaccinated, social distancing, opening windows if possible, putting on masks, practicing good hand hygiene, covering mouth and nose when coughing and sneezing, and isolating when not feeling well. ^[4]

A study conducted in Malaysia in 2020 has shown that good preventive behaviours against COVID-19 were 40.0%, ^[5] with females are shown to be more significantly associated with better practice (OR: 2.04, CI: 95%, p<0.001). ^[6] However, one study showed men had better COVID-19 preventive methods (29.6%) compared to women (28.4%) (p<0.001). ^[7]

Hence, this study aims to compare the preventive practices against COVID-19 among gender in Klang Valley, Malaysia.

MATERIALS AND METHODS

This cross-sectional study was conducted among Malaysian residing in Klang Valley and aged at least 18 years old. The respondents were selected through convenience sampling.

Data was collected through an online survey which was distributed on several social media platforms. The questionnaire consists sections which of two were sociodemographic [8] and COVID-19 prevention with Cronbach alpha = 0.82. ^[9] Pearson's chi-square test was used to determine the association between gender and prevention practices status against

COVID-19. The level of significance was set at a p-value <0.05.

RESULT

A total of 143 respondents participated in this study with a response rate of 99%.

Table 1: S	Status of j	prevention p	practices aga	ainst COVID-19 by
gender (n	= 143)			

	Preventive status		Total	Statistical test		
Gender	Good n (%)	Poor n (%)	n (%)	χ 2 (df)	P- value	
Male	6 (11.1)	48 (88.9)	54 (37.8)	15.74	< 001	
Female	38 (42.7)	51 (57.3)	89 (62.2)	(1)	<.001	
TOTAL	44 (30.8)	99 (69.2)	143 (100.0)			

Table 1 shows that the majority of the respondents were poor in prevention practices against COVID-19 (69.2%) with significantly higher in males (88.9%) as compared to females (57.3%) (p<0.001).

G · I · I · I · II		Status of Prevention Practices			Statistical test		
Sociodemographic Variables	Gender	Good n (%)	Poor n (%)	Total n (%)	x² (df)	P-value	
Age							
18 20	Male	1 (3.1)	31 (96.9)	32 (100.0)	10.178	0.001	
18-29	Female	16 (32.7)	33 (67.3)	49 (100.0)	(1)	0.001	
30.30	Male	1 (14.3)	6 (85.7)	7 (100.0)	2.524	0.112	
30-39	Female	7 (50.0)	7 (50.0)	14 (100.0)	(1)	0.112	
40.49	Male	1 (14.3)	6 (85.7)	7 (100.0)	4.105	0.043	
40-49	Female	8 (61.5)	5 (38.5)	13 (100.0)	(1)	0.043	
50.50	Male	2 (40.0)	3 (60.0)	5 (100.0)	0.142	0.707	
30-39	Female	6 (50.0)	6 (50.0)	12 (100.0)	(1)	0.707	
> 60	Male	1 (33.3)	2 (66.7)	3 (100.0)	1.333	0.248	
≥ 00	Female	1 (100.0)	0 (0.0)	1 (100.0)	(1)	0.248	
Marital Status							
Nover merried	Male	2 (6.7)	28 (93.3)	30 (100.0)	6.546	0.011	
Never married	Female	15 (31.3)	33 (68.7)	48 (100.0)	(1)	0.011	
Married/Diverses/Widow	Male	4 (16.7)	20 (83.3)	24 (100.0)	9.692	0.002	
Warned/Divorcee/ widow	Female	23 (56.1)	18 (43.9)	41 (100.0)	(1)	0.002	
Education Level							
Primary	Male	1 (100.0)	0 (0.0)	1 (100.0)	5.000	0.025	
Filliary	Female	4 (100.0)	0 (0.0)	4 (100.0)	(1)	0.025	
Sacandami	Male	0 (0.0)	4 (100.0)	4 (100.0)	3.592	0.059	
Secondary	Female	4 (57.1)	3 (42.9)	7 (100.0)	(1)	0.038	
Tortion	Male	5 (10.2)	44 (89.8)	49 (100.0)	15.764	<0.001	
Tertiary	Female	34 (43.6)	44 (56.4)	78 (100.0)	(1)	<0.001	
Occupation							
Unamployed/Housewife/Patires	Male	0 (0.0)	1 (100.0)	1 (100.0)	2.182	0.140	
Oliemployed/Housewile/Retiree	Female	8 (72.7)	3 (27.3)	11 (100.0)	(1)	0.140	
Government	Male	0 (0.0)	2 (100.0)	2 (100.0)	1.587	0.208	
Government	Female	7 (46.7)	8 (53.3)	15 (100.0)	(1)	0.208	
Privato	Male	3 (10.7)	25 (89.3)	28 (100.0)	7.314	0.007	
Filvate	Female	9 (45.0)	11 (55.0)	20 (100.0)	(1)	0.007	
Salf amployed	Male	2 (33.3)	4 (66.7)	6 (100.0)	0.278	0.508	
Sen-employed	Female	2 (50.0)	2 (50.0)	4 (100.0)	(1)	0.398	
Student	Male	1 (5.9)	16 (94.1)	17 (100.0)	4.114	0.042	
Student	Female	12 (30.8)	27 (69.2)	39 (100.0)	(1)	0.045	
Household Monthly Income							
B40 (< RM 4850)	Male	0 (0.0)	17 (100.0)	17 (100.0)	13.484	<0.001	
	Female	13 (54.2)	11 (45.8)	24 (100.0)	(1)		
M40 (RM4851-10970)	Male	3 (14.3)	18 (85.7)	21 (100.0)	5.301	0.021	
MITO (MMITOJI-107/0)	Female	19 (43.2)	25 (56.8)	44 (100.0)	(1)	0.021	
T20 (>PM10971)	Male	3 (3.9)	13 (81.3)	16 (100.0)	0.476	0.490	
120 (<u>~</u> KW1107/1)	Female	6 (28.6)	15 (71.4)	21 (100.0)	(1)	0.490	

Table 2: Prevention practices by sociodemographic variables (n=143)

Table 2 shows that younger age group males (18-29 and 40-49) had significant differences in poor prevention practices compared to the older age group (>60) with a p-value of 0.001 and 0.043 respectively. For marital status, males in both never married and married/divorcee/widow groups have significantly poor prevention practices with a p-value of 0.011 and 0.002 respectively. There is also a significant

difference between gender at the tertiary education level (p<0.001). Males who are workers private and students are significantly poorer in prevention practices with a p-value of 0.007 and 0.043 respectively. With respect to income, the lowest income group (B40) for males had the most significant difference in poor prevention practices compared to the highincome group (T20) (p<0.001).

	Gender	Status of Prevention		Statistical test			
Procticos Itoms		Practices		Statistical test			
Tractices riems		Good	Poor	22 (df)	P-		
		n (%)	n (%)	χ ² (ui)	value		
Hand Hygiene							
Shakes hands while greating people	Male	28 (51.9)	26 (48.1)	3.98 (1)	0.046		
Shakes hands while greeting people	Female	61 (68.5)	28 (31.5)				
Washes hands with soan and water/alcohol-based sanitiser	Male	42 (77.8)	12 (22.2)	3.12 (1)	0.078		
wastes hands with soap and water/aconor-based samuser	Female	79 (88.8)	10 (11.2)				
Wash/sanitise hands for at least 20 seconds	Male	20 (37.0)	34 (63.0)	11.63 (1)	<.001		
wash santise nands for at least 20 seconds	Female	59 (66.3)	30 (33.7)				
Covers face with a handkershief / hant alhow while couching /marzing	Male	41 (76.0)	13 (24.0)	6 10 (1)	0.012		
Covers race with a handkerchief/ bent elbow while coughing/sheezing	Female	81 (91.0)	8 (9.0)	0.10(1)	0.015		
Wash/conjitica hands before touching your avas/nosa/mouth	Male	36 (66.7)	18 (33.3)	514(1)	0.023		
wash/samuse nands before touching your eyes/nose/mouth	Female	74 (83.1)	15 (16.9)	5.14(1)			
Social Gathering							
Maintain a minimum distance of one motor outside the house	Male	38 (70.4)	16 (29.6)	1.25(1)	0.264		
Manitani a minimum distance of one meter outside the house	Female	70 (78.7)	19 (21.3)	1.23(1)			
Avoid going out of the house unnecessarily	Male	29 (53.7)	25 (46.3)	4.90(1)	0.027		
Avoid going out of the house unnecessarily	Female	64 (71.9)	25 (28.1)				
	Male	19 (35.2)	35 (64.8)	2 20 (1)	0.069		
Days of attending social gatherings per week	Female	19 (21.3)	70 (78.7)	3.30(1)			
Wearing Mask							
Wears masks while sains out of home	Male	48 (88.9)	6 (11.1)	7 20 (1)	0.007		
wears masks while going out of nome	Female	88 (98.9)	1 (1.1)	7.20(1)			
	Male	50 (92.6)	4 (7.4)	2.02 (1)	0.047		
Covers nose and mouth while wearing a mask	Female	88 (98.9)	1 (1.1)	3.93(1)			
There are the start in the start in the second start is	Male	44 (81.5)	10 (18.5)	14.32	<.001		
I nrow mask into the dustoin after using it	Female	88 (98.9)	1 (1.1)	(1)			
Sanitization							
	Male	14 (25.9)	40 (74.1)	15.26	. 001		
Sanitize personal items upon reaching nome	Female	53 (59.6)	36 (40.4)	(1)	<.001		
	Male	22 (40.7)	32 (59.3)	21.05	. 001		
Take precautions when buying things to avoid virus contamination		70 (78.7)	19 (21.3)	(1)	<.001		
Abiding in authority							
	Male	46 (85.2)	8 (14.8)	1.00(1)	0.031		
Obey government restrictions regarding the COVID-19 pandemic	Female	85 (95.5)	4 (4.5)	4.66(1)			
Self-initiative on COVID-19 Infection							
Contact the hospital/helpline/authority regarding it upon developing	Male	34 (63.0)	20 (37.0)	2.07(1)	0.085		
COVID-19 symptoms	Female	68 (76.4)	21 (23.6)	2.97(1)			
Self-quarantine after becoming close contact with COVID-19 positive	Male	44 (81.5)	10 (18.5)	2.06 (1)	0.151		
nerson	Female	80 (89 9)	9(101)	2.06(1)			

Table 3: Comparison of prevention practices items against COVID-19 by gender (n=143)

Table 3 shows that most male respondents had poorer preventive practices against COVID-19 in washing/sanitizing their hands for at least 20 seconds (63.0%), avoided going out of the house unnecessarily (46.3%), throwing their used mask into the dustbin (18.5%), sanitized their personal items upon reaching home

(74.0%), obeyed the government restrictions regarding COVID-19 (14.8%) and contacted the hospital, helpline or authority upon developing symptoms (37.0%). Except for attending social gatherings for at least three days per week, which was higher in females (78.7%).

DISCUSSION

Our study showed that males have significantly poorer preventive practices against COVID-19 (88.9%) compared to females (57.3%). This is supported with a previous study where females were two times more likely to have better COVID-19 practices compared to men, ^[6] which might be due that men having lower concerns for global health problems and health-seeking activity. ^[10]

A study done in United States of America on 'Proper Hand-Washing Techniques in Public Restrooms' found that males had a lower percentage of washing hands for more than 15 seconds (17.9%) compared to females (44.8%), which was consistent with our findings on more male poorly washed/ sanitized their hands for at least 20 seconds (63.0%). ^[11] This might be due to a significantly reduced knowledge in males on the effective duration of handwashing (p<0.0001) ^[12] of at least 20 seconds to prevent the spreading of pathogens as recommended by the CDC. ^[13]

WHO required that people discard used masks immediately in a closed bin. ^[14] However, our study revealed that 18.5% of male respondents are less likely to throw their masks into the dustbins after using them. Reusing face masks may be attributed to this finding as over half of people use disposable masks more than once before disposal. ^[15]

Poorly obeying the government restrictions regarding COVID-19 were found to be significantly higher in male for our study (14.8%) which was supported by an analysis in Jakarta, Indonesia that showed 29.6% of their male respondents were significantly non-compliant to their large-scale social restrictions issued by the government as compared to female (20.7%) (p=0.01). ^[16] This could be related to the public's satisfaction level with the actions taken by the government which was significantly associated with gender as reported in a study done in Johor, Malaysia (p=0.001, 0.049, 0.035, 0.025, 0.025). ^[17] Likewise, males tend to have lower health literacy

scores which might be another contributor to the lack of compliance with pandemic regulations.^[18]

The poorest preventive practices for COVID-19 among the younger age group could be due to poor health literacy in lower education groups as found in a previous study. ^[19] Similarly, in lower income groups where low income is also a predictor outcome for knowledge of the virus. ^[20] The lack of knowledge could be factored by the increased odds of poor health literacy among those with low incomes. ^[21]

CONCLUSION

Males are the least likely to be proactive to practice preventive habits to prevent COVID-19 infection. Specifically, males are less likely to wash their hands for at least 20 seconds, avoid going out unnecessarily, sanitize their personal items, adhere to government restrictions regarding the pandemic, have proper mask usage as well as seek medical help when necessary.

Therefore, it is crucial the Health Ministry address the situation more specifically for males. With several studies proving males, having low literacy and concern for health, interventions should be focused more on education and promoting awareness among men.

Acknowledgement: The completion of this study could not have been accomplished without the assistance and constant guidance from our supervisors at the University of Cyberjaya (UoC). We would also like to express our deepest appreciation to Group 2 from Community Medicine Posting, Class 2021/2022, undergraduate medical students of UoC for their help in collecting the data obtained in this study.

Conflict of Interest: None

Source of Funding: None

Ethical Approval: Approved

REFERENCES

- Centers for Disease Control and Prevention (CDC). Basics of COVID-19. [Internet]. 2021 [updated 2021 Nov. 4; cited 2022 Sept. 15]. Available from: https://www.cdc.gov/coronavirus/2019ncov/your-health/about-covid-19/basicscovid-19.html
- World Health Organization (WHO). Getting your workplace ready for COVID-19. [Internet]. 2020. [updated 2020 March 3; cited 2022 Sept. 15]. Available from: https://www.who.int/docs/defaultsource/coronaviruse/getting-workplaceready-for-covid-19.pdf?sfvrsn=359a81e7_6
- Norfazilah A, Norzehan FMA, Azmawati MN, et al. Clinical Characteristics of Patients with Coronavirus Disease 2019 (COVID-19) in a Teaching Hospital in Malaysia. J Infect Dev Ctries. 2021; (8):1059-1065.
- World Health Organization (WHO). COVID-19 transmission and protective measures. [Internet]. 2021. [updated 2022 June 1; cited 2022 Sept. 16]. Available from: https://www.who.int/westermpacific/emerge

https://www.who.int/westernpacific/emerge ncies/covid-19/information/transmissionprotective-measures

- Bachok N, Ghazali AK, Hami R. Knowledge, awareness, attitude and preventive behaviour on the transmission of the pandemic novel coronavirus among Malaysians. Malays J Med Sci. 2020; 28(2):106-118.
- Chang CT, Lee M, Lee JCY et al. Public KAP towards COVID-19 and Antibiotics Resistance: A Malaysian Survey of Knowledge and Awareness. Int J Environ Res Public Health. 2021; 18(8):3964.
- Bekele D, Tolossa T, Tsegaye R, et al. The Knowledge and Practice towards COVID-19 Pandemic Prevention among Residents of Ethiopia. An Online Cross-Sectional Study. PLoS ONE. 2021; 16(1):e0234585.
- National Health and Morbidity Survey (NHMS) 2019. Technical Report – Volume II: Healthcare Demand. Malaysia: Institute for Health Systems Research, National Institutes of Health, Ministry of Health; 2020.

- 9. Agarwal A, Ranjan P, Rohilla P, et al. Development and validation of a questionnaire to assess preventive practices against COVID-19 pandemic in the general population. Prev Med Rep. 2021; 22:101339.
- Stefan Ek. Gender differences in health information behaviour: a Finnish population-based survey. *Health Promot Int.* 2015; 30(3):736-745.
- Kinnison A, Cottrell RR, King KA. Proper Hand-Washing Techniques in Public Restrooms: Differences in Gender, Race, Signage, and Time of Day. Am J Health Educ. 2004; 35(2):86-89.
- Guzek D, Skolmowska D, Głąbska D. Analysis of Gender-Dependent Personal Protective Behaviors in a National Sample: Polish Adolescents' COVID-19 Experience (PLACE-19) Study. Int J Environ Res Public Health. 2020; 17(16):5770.
- 13. Centers for Disease Control and Prevention (CDC). Handwashing and Making a Solution for Handwashing in Global, Low-Resource Settings. [Internet]. 2022 [updated 2022 Jan. 26; cited 2022 Sept. 17]. Available from: https://www.cdc.gov/coronavirus/2019ncov/global-covid-19/handwashing.html#print
- 14. World Health Organization (WHO). Coronavirus disease (COVID-19) advice for the public: When and how to use masks. [Internet]. 2021 [updated 2021 Dec.; cited 2022 Sept. 17]. Available from: https://www.who.int/emergencies/diseases/n ovel-coronavirus-2019/advice-forpublic/when-and-how-to-use-masks
- Pereira-Ávila FMV, Lam SC, Góes, FGB, et al. Factors associated with the use and reuse of face masks among Brazilian individuals during the COVID-19 pandemic. Rev Latino-Am Enfermagem. 2020; 28:e3360.
- 16. Rosha BC, Suryaputri IY, Irawan IR, et al. Factors Affecting Public Non-compliance With Large-scale Social Restrictions to Control COVID-19 Transmission in Greater Jakarta, Indonesia. J Prev Med Public Health. 2021; 54:221-229.
- 17. Vilosha SK, Asrah NM. Study on Public Awareness and Perception on the Spreading of COVID-19 in Johor, Malaysia. Enhanced

Knowledge in Science and Technology. 2021; 1(2):185-192.

- Clouston SAP, Manganello JA, Richards M. A life course approach to health literacy: the role of gender, educational attainment and lifetime cognitive capability. Age Ageing. 2017; 46(3):493-499.
- Jaafar N, Perialathan K, Krishnan M, et al. Malaysian Health Literacy: Scorecard Performance from a National Survey. Int J Environ Res Public Health. 2021; 18(11):5813.
- Al-Hanawi MK, Angawi K, Alshareef N, et al. Knowledge, Attitude and Practice Toward COVID-19 Among the Public in the Kingdom of Saudi Arabia: A Cross-Sectional Study. Front Public Health. 2020; 8:217.
- 21. Svendsen MT, Bak CK, Sørensen K, et al. Associations of health literacy with socioeconomic position, health risk behavior, and health status: a large national population-based survey among Danish adults. BMC Public Health. 2020; 20:565.

How to cite this article: Muhammad Azmi Kamaruddean, Auni Widad Mohd Yusof, Muhammad Suffi Abdul Kadir et.al. Preventive practices against covid-19: comparison between gender in Klang Valley, Malaysia. *International Journal of Science & Healthcare Research*. 2022; 7(4): 1-6. DOI: https://doi.org/10.52403/ ijshr.20221001
